콘텐츠 중심 네트워크에서 이중 경로 콘텐츠 전송 기법 연구

성태진*, 홍충선** 이성원
경희대학교 컴퓨터공학과

tjsung@khu.ac.kr*, cshong@khu.ac.kr**, drsungwon@khu.ac.kr

Two-path Content Transfer Scheme in Content-centric Network

Taejin Sung*, ChoongSeon Hong** Sungwon Lee
Department of Computer Engineering, KyungHee University

요 약

콘텐츠 중심 네트워크는 현재 인터넷의 문제점을 해결하기 위해 만들어진 미래 인터넷을 위한 네트워크이다. 사용자가 원하는 콘텐츠를 요청하면 Interest 패킷을 보내 네트워크 상에서 콘텐츠를 검색하고 Data 패킷으로 해당하는 콘텐츠를 응답한다. 기존의 콘텐츠 중심 네트워크에서는 하나의 요청에 대해 Data 패킷을 먼저 도착하는 하나의 서버나 라우터에서 전송받고 이후에 도착하는 Data 패킷은 폐기시키고 있다. 이는 네트워크에 불필요한 트래픽을 발생시키기 때문에 비효율적이다. 따라서 본 논문에서는 새로운 Interest 패킷 포워딩을 통해 Data 패킷을 두 개의 서버나 라우터에서 전송받는 기법을 제안한다.

1. 서 론

현재의 인터넷은 여러 가지 문제점을 가지고 있다. 그 중 하나는 여러 사용자가 동일한 콘텐츠를 다운로드하기로 그 콘텐츠는 항상 서버에서 전송되는 것이다. 이는 네트워크 복잡성 사용 측면에서 매우 비효율적이다. 그렇기 때문에 미래 인터넷을 위한 효율적인 네트워크인 콘텐츠 중심 네트워크(content-centric network)가 제안되었다. 콘텐츠 중심 네트워크는 네트워크의 모든 라우터들이 콘텐츠를 저장할 수 있는 커시지를 가지고 있으며 사용자가 요청한 콘텐츠가 이를 지나가면서 라우터에서 저장되기 때문에 동일한 콘텐츠 요청에 대해서는 서버가 필요 없이 중간 라우터에서 전송을 받을 수 있다. 콘텐츠 중심 네트워크는 콘텐츠를 요청하는 Interest 패킷과 콘텐츠를 가지고 사용자에게 전송되는 Data 패킷이라는 두 개의 메시지를 포함하고 있다. Interest 패킷은 사용자의 요청에 해당하는 네트워크로 포워딩되며 콘텐츠를 발견하게 되면 Data 패킷으로 응답된다[1][2].

기존의 콘텐츠 중심 네트워크에서는 Interest 패킷이 포워딩되고 해당하는 콘텐츠가 여러 라우터나 서버에서 발견될 경우, 응답되는 Data 패킷 중 가장 먼저 도착하는 Data 패킷만을 수신하고 나머지 경로의 Data 패킷은 폐기시키게 된다. 이는 전송방식도 많고 폐기시키는 Data 패킷은 사용자에게 보내기 때문에 네트워크에 불필요한 트래픽을 발생시킨다. 네트워크에 해당하는 콘텐츠가 많을 경우 불필요한 트래픽이 더욱 많이 발생할 것이다.

따라서 본 논문에서는 첫 번째로 도착한 Data 패킷 이후에 도착하는 Data 패킷을 사용자에게 해당 콘텐츠의 몇 번호의 첫 번호를 요청하는 새로운 Interest 패킷을 보낼 경우 콘텐츠를 두 개의 경로로 전송받는 기법을 제안한다.

2. 이중 경로 콘텐츠 전송 기법

본 논문에서는 콘텐츠 중심 네트워크에서 이중 경로로 콘텐츠를 전송받는 기법을 제안한다. 콘텐츠 중심 네트워크는 요청에 대해 처음 도착하는 Data 패킷을 단일 경로로 전송받고 이후에 도착하는 Data 패킷을 폐기시킨다. 이중 경로로 콘텐츠를 전송받기 위해 본 논문에서 제안하는 기법은 처음 도착하는 Data 패킷을 전송받으면서 이후에 Data 패킷이 도착하면 됨으로 해당 Data 패킷이 들어온 페이지로 콘텐츠 첫 번호부터 하나씩 완료하는 새로운 Interest 패킷을 만들어 보낸다. 그렇게 되면 첫 번째 Data 패킷은 첫 번호 1번부터 전송받게 되고 새로운 Interest 패킷을 받은 서버나 라우터는 해당 콘텐츠의 첫 번호부터 내림차순으로 전송을 해준다. 이후 사용자에 동일한 번호로 가져온 첫 번호가 도착하게 되면, 해당 콘텐츠를 모두 전송받은 것이기 때문에 전송을 종료한다. 다음의 Algorithm 1은 제안사항의 동작과 정에 대한 간단한 Pseudo code로 보여준다.

Algorithm 1 Two-path Content Transfer Operation
1: receive_data(chunk);
2: if first_data(chunk) then
3: cache_ASC(chunk, chunk_num);
4: end if
5: else if same_data(chunk) then
6: discard(chunk);
7: while(same_chunk(chunk_num)) then
8: forward_new_interest(chunk_num);
9: cache_DSC(chunk, chunk_num);
10: end while
11: end else if
12: close();

본 연구는 미래부가 지원한 2013년 정보통신•방송(ICT) 연구개발사업의 연구결과로 수행되었음. *Dr. CS Hong is the corresponding author.
예를 들어, 그림 1과 같은 간단한 네트워크를 고려하 자. A와 B로 표시된 두 개의 라우터가 사용자가 원하는 콘텐츠를 가지고 있는 라우터에 가정하고 해당 콘텐츠 는 10개의 정크로 나뉘다고 가정한다. 사용자가 엽지 라 우터로 원하는 콘텐츠를 요청하면 Interest 패킷이 브로 드캐스팅된다. 그리고 라우터 A에서 콘텐츠가 발견되어 0번 정크부터 정로를 따라 사용자에게 보내진다. 앞의 과정이 일어나면서, 라우터 B에서도 0번 정크부터 정로 를 따라 사용자에게 보내질 것이다. 기존의 콘텐츠 중심 네트워크에서는 사용자가 라우터 A로부터 콘텐츠를 전송 받기 때문에, 라우터 B로부터 도착하는 콘텐츠는 폐기된다. 하지만 본 논문에서 제안한 기법은 라우터 B에서 콘텐츠를 도착하면 라우터 B로 움직인 콘텐츠의 마지막 정크 번호인 9번부터 내밀차순으로 요청하는 Interest 패킷을 보낸다. 그렇게 되면 라우터 B에서는 9 번 정크부터 사용자에게 전송한다. 이후 사용자가 콘 텐츠를 계속 받기 위해서만 라우터 A와 B 모두에서 5 번 정크를 받았다고 가정하면, 원록 경로에서 1-5번까지 받고, 오른쪽 경로에서 9-5번까지 받은 것이기 때문에 모든 콘텐츠를 전송받음을 확인하고 전송을 종료한다.

시뮬레이션 결과는 그림 2에 나타난 것과 같다. 기존 의 CCN(검색력 검)의 경우 20조 동안 약 2,000kb를 전송 받았고 제안사항인 Two-path CCN(블랙색 검)의 경우 같 은 시간동안 약 2,350kb를 전송받았다. 거의 두 배 정도 성능 향상을 예상되었으나, 수신자와 연결된 첫 번째 라 우터 사이의 링크가 bottleneck 링크이며 대역폭을 적게 할당하였기 때문에, 자연히 많이 생겨 약 1.18배의 성능 향상을 확인할 수 있었다.

![그림 2 시간당 콘텐츠 전송량 비교](image)

4. 결론 및 향후 연구

본 논문에서 콘텐츠 중심 네트워크에서 이중 경로로 콘텐츠를 전송 받는 기법을 보였다. 콘텐츠 중심 네트워크는 아직 국제표준이 만들어지지 않았고, 연구 및 개발 이 활발히 진행 중인 미래 인터넷을 위한 네트워크이다. 따라서 본 논문에서 제안한 기법이 성능 평가에서 나타난 것처럼 콘텐츠의 전송 시간을 줄여줄 수는 있지만 이중 경로 전송에 따른 잠재적인 문제점들이 있을 수 있다.

따라서 향후 연구에서는 콘텐츠 중심 네트워크에서 다 중 경로로 전송할 경우 발생하는 문제점을 확인하고, 각 경로에 서버나 라우터에서 콘텐츠를 전송받는 것이 가 장 효율적인지 분석하여, 두 개 이상의 서버나 라우터에 서 다중 경로로 콘텐츠를 전송받는 기법에 대해 연구할 것이다. 그리고 다중 경로로 전송 받을 경우, 각각의 경 로마다 전송되는 콘텐츠 첨단의 비율을 정하는 알고리즘 을 연구할 것이다.

참고 문헌