User Association and sub-channel allocation in uplink
Cognitive Smallcell Network

Tuan LeAnh, S.M.Ahsan Kazmi, and Choong Seon Hong
Department of Computer Engineering, Kyung Hee University
Email-{tuan, ahsankazmi, and cahong}@khu.ac.kr

Abstract

In this paper, we provide a novel solution of user association and sub-channel allocation problem in uplink cognitive smallcell network (CSN). The CSN is deployed by reusing channels of a macrocell using underlay spectrum access paradigm in cognitive radio network. In respect of user association, each cognitive smallcell base station (CSBS) has limitations on connecting the number of cognitive smallcell user equipments (CSUEs) to prevent from the CSBS overloading. Under the above setups, we formulate an optimization problem to maximize sum rate in uplink data transmission while protecting the macro base station (MBS) by an interference threshold. We use matching theory to solve the optimization problem in distributed manner. Finally, we showed the proposed framework has efficient performance through the simulations.

I. Introduction

Recently, the new paradigms are known as the heterogeneous wireless networks (HetNets) with coexistence of tiers which comprise of a macrocell under laid on smallcell [1],[2]. Due to the autonomous deployment of smallcells, interference management becomes a challenging issue. One promising solution to address the interference issue is to use orthogonal frequency division multiple access (OFDMA) for smallcells [2]. In order to utilize the limited licensed spectrum more efficiently, sub-channel in OFDMA can be reused using cognitive radio technology which can be a promising technology to realize such flexible interference management [3]. Some previous works done deploying smallcell network using underlay spectrum access paradigm in cognitive radio network [4],[5]. But they did not mention how user associate to one smallcell base station and how allocate multiple channel to multiple users which become a hard problem to solve. Our contribution in this paper as follows:

- We propose a novel solution problem of user association and sub-channel allocation problem in term of primary protection and limited quote number of user connecting to a CFBS.
- We propose distributed algorithms based on matching theory which can be deployed smallcell in distributed manner.

The remainder of this paper is organized as follows. The detailed system model and problem formulation are presented in section II. A joint user association and sub-channel allocation based on matching theory is presented in section III. Next, some the simulation results are showed in section V. Finally, Section VI conclusions.

II. System model and formation problem

System model.

We consider an uplink cognitive consisting of a set $\mathcal{M} = \{1,\cdots,M\}$ CSBSs, which serves a set of $\mathcal{N} = \{1,\cdots,N\}$ CSUEs as in Fig.1. There are K sub-channels are utilized from MBS. Moreover, each CSBS are assigned K_m sub-channels where have no interference among CSBSs, and each CSUE only use one sub-channel for transmitting data. These sub-channel can overlapping at CSBSs. A cognitive smallcell management (CSM) is deployed supporting MBS protection and channel allocation.

Problem formulation.

In user association, we assume that there is a limitation number of CSUEs associating to a CSBS to avoid base station overloading as follows:

$$\sum_{m=1}^{M} x_{r,m} \leq q, \forall m (1)$$

1238
Each CSUE can be assigned one sub-channel for transmitting data, then
\[\sum_{i=1}^{K} y_{ni} \leq 1, \forall n. \quad (2) \]

In order to protect MBS, total received interference power at MBS has to less than a threshold as follows:
\[\sum_{i=1}^{K} \sum_{m=1}^{M} g_{im} P_{im}^{k} \leq I_{0}^{k}. \quad (3) \]

Where \(I_{0}^{k} \) is interference threshold of MBS.

Under the aforementioned constraints, the problems of user association and channel allocation can be formulated via an optimization problem as follows:

OPT-1:
\[
\begin{align*}
\text{max.} & \quad \sum_{n=1}^{N} \sum_{m=1}^{M} x_{nm} y_{nm} R_{mn}^{k}(P_{mn}^{k}) \\
\text{s.t.} & \quad (1),(2),(3) \\
& \quad \sum_{n=1}^{N} x_{nm} \leq 1, \forall m, \forall n, \\
& \quad P_{mn}^{k} = P_{mn}^{\text{max}}, \forall n,m,k,
\end{align*}
\]

Where \(P_{mn}^{k} \) is power of n-th CSUE associating with m-th CSBS on channel k; constraint (4) imply that each CSUE can be associated with only one CSBS at a given time. \(R_{mn}^{k} \) is rate of n-th CSUE associating with m-th CSBS on k-th sub-channel as follows:
\[R_{mn}^{k} = B_{k} \log_{2} \left(1 + \frac{g_{mn}^{k} P_{mn}^{k}}{K_{m} P_{mn}^{k} + \sigma^{2}} \right), \quad (5) \]

where \(B_{k} \) is bandwidth of sub-channel k; \(g_{mn}^{k} \) is channel gain between n-th CSUE and m-th CSBS on sub-channel k; \(K_{m} P_{mn}^{k} \) is interference level of MUE k to CSBS m; \(\sigma^{2} \) is Gaussian Noise at CSBS. In next section, we discuss solving OPT-1.

III. Joint user association and sub-channel allocation.

We now present our proposal to solve the problem OPT-1 given in previous section. It is observed that OPT-1 is an NP-hard combinatorial optimization problem. In order to solve OPT-1, we using matching theory to solve OPT-1 as bellows separated steps.

Phase I: User association.

First, by fixing variable \(x \), we find variable \(y \) based on below optimization problem:

OPT-2:
\[
\begin{align*}
\text{max.} & \quad \sum_{n=1}^{N} \sum_{m=1}^{M} x_{nm} y_{mn} R_{mn}^{k}(P_{mn}^{k}) \\
\text{s.t.} & \quad (1),(3),(4) \\
& \quad \sum_{m=1}^{M} x_{nm} \leq 1, \forall n. \\
& \quad P_{mn}^{k} = P_{mn}^{\text{max}}, \forall n,m,k,
\end{align*}
\]

Based on matching game theory [6], we transform finding variable \(x \) by using matching one-to-one between two sets \(M \) and \(N \) which satisfy constraints (1), (3), and (4). For this problem, the matching game problem is defined as follows:

Definition 1: A matching-based user association problem is defined by the tuple as a function from \((N, M, \gamma, \gamma_{m}, q_{m}) = (1, q_{m}, q_{m} \times x)\). The sought solutions is a matching function a matching game \(\mu_{n} : N \cup M \rightarrow N \cup M \)

which provides the final allocation between CSUES and CSBSs based on preference functions \(\gamma_{n} \) and \(\gamma_{m} \).

In this game, quota value of each CSUE \(q_{N} \) and each CSBS \(q_{M} \) are corresponding to constraints (4) and (1). Let \(U_{n,m} \) and \(U_{m,r} \) denote, respectively, the utility functions of players CSUES and CSBSs. In this game, quota value of each CSUE \(q_{N} \) and each CSBS \(q_{M} \) are corresponding to constraints (4) and (1). Let \(U_{n,m} \) and \(U_{m,r} \) denote, respectively, the utility functions of players CSUES and CSBSs.

CSBS utility function.
\[U_{n,m}(n) = \frac{1}{K_{m}} \sum_{k=1}^{K} R_{mn}^{k} - q_{m} t_{kn}, \quad (6) \]

where \(U_{n,m}(n) = \frac{1}{K_{m}} \sum_{k=1}^{K} R_{mn}^{k} \) is average data rate of n-th CSUE associating to m-th CSBS on \(K_{m} \) sub-channels.

\(t_{kn} \) is total interference at MBS caused by n-th CSUE on \(K_{m} \) sub-channels. \(q_{m} \) is fixed coefficient with each interference power unit.

CSUE utility function.
\[U_{n,m}(m) = \frac{1}{K_{m}} \sum_{k=1}^{K} R_{mn}^{k} \quad (7) \]

where \(U_{n,m}(m) = \frac{1}{K_{m}} \sum_{k=1}^{K} R_{mn}^{k} \) is average data rate of n-th CSUE associating to m-th CSBS on \(K_{m} \) sub-channels.

Based on (6) and (7), the CSUE and CSBSs construct their utility functions and update to two preference list \(\gamma_{n} \) and \(\gamma_{m} \) in sorting deceased utility function, respectively. By using these preference list, the CSUES will seek to matched to the best CSBS with higher achievable rates. At the CSBS side, CSBSs will seek to be matched to the best CSUE with higher achievable data rate and lower interference power to the MBS.

An algorithm is proposed to find the best value \(x \) in stable matching based on **Algorithm 1**.

Algorithm 1: User association based on matching theory (MUA)

Inputs:
- \(N, M, q_{N} = 1, q_{M} = q_{m} \times x \)
- \(\gamma_{n}, \gamma_{m}, q_{N}, q_{M} \)

Initialize:
- \(N_{\text{req}}^{\text{CSUE}}, N_{\text{req}}^{\text{CSBS}} \)

Stage I: Discovery and utility computation
1) CSBSs broadcasts its sub-channels to CSUES
2) CSUEs compute its utility values and build \(\gamma_{n} \) based on (7)

Stage II: Swap-matching to find stable matching \(\mu_{n} \)
3) Each n-th CSUE sends a request to CSBS m, \(m = \arg\max(\gamma_{m}) \)
4) Each m-th CSBS do:
 a. Updates set of requested CSUES \(N_{\text{req}}^{\text{CSUE}} \).
 b. Computes utility values and build \(\gamma_{m} \) based on (6).
 c. Update accepted list:
 i. If \(q_{m} < q_{m}^{\text{req}} \) then \(N_{\text{req}}^{\text{CSBS}} \leftarrow \arg\max(U_{m,n}(n)) \)

 Delete n in \(\gamma_{m} \), \(s_{nm} = 1 \)

 Else \(N_{\text{req}}^{\text{CSBS}} \leftarrow N_{\text{req}}^{\text{CSBS}} \backslash N_{\text{req}}^{\text{CSBS}} \)
Delete m in \(Y_m, n \in \mathcal{N}_{\text{CS}}^{\text{max}} \)
\[x_{n,m} = 0 \] and Go back to step 3.

Outputs: \(\mathcal{N}_{\text{CS}}^{\text{max}} = \emptyset \), \(\chi' \) and Stable matching \(u' \) [6]

Phase II. Sub-channel allocation and MBS protection.

Given \(Y_m, n \) in algorithm 1, by the same previous work each CSBS m allocates sub-channel to its CSUEs and protects MBS by using matching game for sub-channel allocation as follow basic steps:

At the CSBS:
1. Each CSBS m constructs a list of \(K_m \) sub-channels with deceased interference power from MUEs in \(K_m \) to CSBS m (denoting by \(Y_{m,k} \)).
2. Each CSBS m assigns CSUE \(n' = \max(Y_{m,k}) \) to sub-channel \(n'' = \min(Y_{m,k}) \). By do this, the CSUE will be selected with criteria that have the highest average data rate. The sub-channel that allocate to this CSUE has lowest interference to the CSS.
3. Each CSBS sends a proposal \([u'(m',n')] \) to CSN.

At the CSM (MBS protection):
Denoting admission control variable \(A \) by a set of CSUEs that are permitted to transmit data.
1. Update \([u'(m',n')] \) from CSBSs to \(A \).
2. Update current interference level \(I_m^{\text{max}} \) from MBS
3. Admission control and MBS protection:
 - If \(I_m^{\text{max}} \leq I_m^{\text{max}} \) then update value \(Y_{m,n}^{\text{max}} = 1 \)
 - Else \(A \leftarrow A \setminus \{n\} \), where \(n^{\text{max}} = \arg \min_{n} (u'(m',n') - g_{m,k}^{\text{max}}) \)
 - Send a request to delete transmit data CSUE \(n^{\text{max}} \) at CSBS m on channel k. We note that this CSUE will be considered at next transmission. Go back to step 2.

End

Results: The best subchannel allocation \(y' \) and constraint (3) is hold.

IV. Simulation results

In this section we present our simulation with Matlab to evaluate the performance of our proposals. We consider an indoor environment where \(M = 5 \) CSBSs are located with a MBS as in Fig. 1. Some parameters are installed as follows: \(N = 100 \); \(d_{m} = 10 \); \(P_{m}^{\text{max}} = 20 \) dBm; \(I_{b}^{\text{th}} = 80 \) dBm; \(\sigma^2 = -105 \) dBm; \(B_k = 180 \) KHz; \(K = 20 \) sub-channels. The channel gain is assumed to be iid Rayleigh random variables with mean value \(h(d) = h_0(d/15)^{\alpha} \) where \(h_0 \) is a reference channel gain at a distance 15 m. In Fig. 1, we compare three schemes composed of user association based on matching theory combined with sub-channel allocation using matching theory (UA–MC&CA–MC–utility): user association using matching theory but random choose channel under primary protection (UA–MC&CA–random); and, user association using matching but random allocating channel without MBS protection (UA–MC&CA–QoS). The results is presented in Fig.1 with 1000 iterations. By taking results with cumulative distributed function (CDF), clearly, our proposal is best in term of MBS protection with threshold less than \(-96 \) dBm. In order to estimate our proposal in phase I, we increase number of CSUEs and compare with others schemes: UA–max–SINR (CSUEs choose CSBSs based on max–SINR level, UA–random (CSUEs randomly choose CSBSs). In Fig. 2, clearly the average data rate of CFUEs in our proposal (UA–MC) is greater than other schemes (Fig.2a) while guaranteeing total interference level threshold (Fig.2b).

V. Conclusions

In this paper, we proposed a user association and sub-channel allocation solution to maximize total throughput in uplink CSN. Problems of user association, subchannel allocation are considered in quota of each CSBS and primary protection via the NP-hard optimization problem. We solved the optimization problem by applying matching theorem and proposed two distributed algorithms. The proposed framework is tested based on the simulation results and shown to perform efficiently.

Acknowledgment

This research was supported by Basic Science Research Program through National Research Foundation of Korea(NRF-2014R1A2A2A01005900). Dr. CS Hong is the corresponding author.

Reference