Energy Efficient Resource Allocation in Unmanned Aerial Vehicles-Enabled Wireless Networks

Nway Nway Ei, Chit Wutyee Zaw, Yan Kyaw Tun, Choong Seon Hong

Department of Computer Science and Engineering, Kyung Hee University
Yongin, 446-701 Korea
{nwayei, cwyzaw, ykyawtun7, cshong}@khu.ac.kr

Abstract

In this paper, the transmit power minimizing of Unmanned Aerial Vehicles (UAVs) which are deployed as aerial base stations is investigated. We assume that the UAVs operate under the frequency division multiple access (FDMA) technique to provide wireless services to the ground users distributed in hotspot area. For the given locations of UAVs and cell association of users, we minimize the transmit power of UAVs under the fair bandwidth allocation satisfying the user data rate requirement using convex optimization. Our analytical results show that the total transmit power of UAVs can be reduced by allocating the bandwidth fairly.

1. Introduction

Unmanned Aerial Vehicles (UAVs), such as drones and balloons, have been used in various applications which contain surveillance and monitoring, military, telecommunications, delivery of medical supplies and rescue operations. However, such conventional UAV-centric research has typically focused on issues of navigation, control, and autonomy, as the motivating applications were typically robotics or military oriented [1]. Due to the advancement of UAVs technology, deploying UAVs as flying aerial base stations becomes a promising solution to extend the wireless coverage and enhance the performance of existing ground wireless networks in terms of capacity, delay and quality of service (QoS) in the areas where the existing terrestrial base stations cannot be fully operational or damaged and in hotspot areas where there are crowded users. They can provide on-the-fly communications and establish line-of-sight (LoS) communication links to the ground users because of their inherent attributes such as mobility, flexibility, and adaptive altitude. They can also be used in public safety scenarios to provide fast and ubiquitous connectivity.

They have many advantages as well as enormous challenges such as air-to-ground channel modeling, trajectory optimization, hover time optimization and energy-efficient deployment. Beyond deployment issues, the energy consumption of UAVs is also an important challenge [3]. In this paper, we contribute to minimize the transmit power of UAVs under the fair bandwidth allocation scheme satisfying the user’s data rate requirement by exploiting convex optimization.

The rest of the paper is as follows. In Section 2, we present the system model and problem formulation. We conduct the simulation results in Section 3 and conclude the paper in Section 4.

2. System Model and Problem Formulation

In our system model, we consider a certain hotspot area in which there are a set \(S = \{1, 2, ..., N\} \) of ground users uniformly distributed in each cell partition \(D_i \) of that two-dimensional area and a set \(J = \{1, 2, ..., I\} \) of UAVs are deployed as aerial base stations to provide wireless services to ground users. Each UAV \(i \) will connect with all the users located in the cell \(D_i \). Therefore, the number of UAVs is equal to the number of cell partitions in that area. Among two types of UAVs: fixed wing and rotatory wing, we deploy rotatory wing UAVs because they can hover (stay stationary) in the air. Each cell partition will be serviced by a UAV which adopts FDMA technique to provide wireless
service to ground users. Furthermore, we consider the
downlink scenario and the area of the cell partitions
within that area and locations of UAVs are known. Let
\(u_i = (x_i, y_i, h_i) \) be the three dimensional coordinates of
UAV i and each UAV is located at the altitude of 200m
so that it can have line of sight communication links
with the user at \(s = (x, y) \) in its associated cell.

In our model, we consider each UAV has line of
sight communication link with its associated user and
the path loss between UAV i and a given user at the
location \((x, y)\) is given by [2]:

\[
\beta_{i,n} = \left(\frac{4\pi f_c d_0}{c} \right)^2 \left(\frac{d_{in}}{d_0} \right)^2 \eta
\]

(1)

Where, \(f_c \) is the carrier frequency, \(c \) is the speed of
light, \(\eta \) is the attenuation factor for LoS link and \(d_0 \) is
the free-space reference distance.

\[
d_{in} = \sqrt{(x_n - x_i)^2 + (y_n - y_i)^2 + h_i^2}
\]

is the distance between UAV i and any given user located at \((x, y)\) in
its coverage. We consider that \(d_0 = 1m \) and \(\lambda = \left(\frac{4\pi f_c}{c} \right)^2 \).

Hence, the received signal power of a user when it is
connected to UAV i is:

\[
P_{r,n}^i = \frac{P_{t,n}^i}{\lambda d_{in}^2 \eta} \quad \forall n \in S_i
\]

(2)

Where, \(P_{t,n}^i \) is the transmit power of UAV i to user n.
Considering that all UAVs adopt FDMA technique, the
SNR for a user located at \((x, y)\) if it connects with UAV
i can be written as:

\[
SNR_n^i = \frac{P_{r,n}^i}{n_0} \quad \forall n \in S_i
\]

(3)

Where, \(n_0 \) is the noise power spectral.

The data rate of a user in a cell partition associated by
UAV i is given by:

\[
R_{i,n} = \frac{B_i}{\log_2(1 + SNR_n^i)} \quad \forall n \in S_i
\]

(4)

Where, \(B_i \) is the bandwidth allocation factor that can be
adjusted to control. \([S_i]\) is the number of users
uniformly distributed in cell \(D_i \).

Then the following equation ensures that all the users
get equal amount of bandwidth [2].

\[
\frac{B_i}{|S_i|} = \frac{B_j}{|S_j|} \quad \forall i \neq j
\]

(5)

Now, we formulate our optimization problem to
minimize the total transmit power of UAVs as follows:

\[
\min_{P_{t,n}} \sum_{i=1}^{I} \sum_{n=1}^{N} P_{t,n}
\]

(6)

s.t \(R_{i,n} \geq r, \quad \forall i, n \in S_i \)

(7)

\[
\sum_{n=1}^{N} P_{t,n} \leq P_{\text{max}}, \quad \forall i
\]

(8)

Where, the constraint (7) ensures that each user
meets its data rate requirement and (8) guarantees
that the total transmit power of UAV i which serves
the numbers of users in its footprint does not exceed its
maximum power.

Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_c)</td>
<td>Carrier frequency</td>
<td>2 GHz</td>
</tr>
<tr>
<td>(n_0)</td>
<td>Noise power spectral</td>
<td>-170 dBm/Hz</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Attenuation factor for LoS link</td>
<td>3 dB</td>
</tr>
<tr>
<td>(B)</td>
<td>Bandwidth of each UAV</td>
<td>1 MHz</td>
</tr>
<tr>
<td>(h)</td>
<td>Altitude</td>
<td>200 m</td>
</tr>
<tr>
<td>(r)</td>
<td>Date rate requirement per user</td>
<td>1 Mbps</td>
</tr>
</tbody>
</table>

3. Simulation Results

![Fig.2. Bandwidth Versus Users](image)

In figure 2, we can see that every user gets the
equal amount of bandwidth. Figure 3 illustrates that
transmit power of UAV i to its users within its cell
Using convex optimization, we obtain the optimal transmit powers of UAV i to the users which are uniformly distributed in a given cell partition.

4. Conclusion
In this paper, we employed the convex optimization to minimize the total transmit power of UAV under the fair allocation of bandwidth satisfying the user’s data rate requirement by considering that UAV has LoS communication link with the user. For our future work, we will investigate how to maximize the throughput of users by taking into account the mobility of UAVs and the effective user association.

Acknowledgement
This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2015–0–00567, Development of Access Technology Agnostic Next-Generation Networking Technology for Wired–Wireless Converged Networks) "Dr. CS Hong is the corresponding author.

REFERENCES