Introduction to Wireless Mesh Networks

cshong@khu.ac.kr, Choong Seon Hong, KHU

Wireless Mesh Networks

- A hybrid network, built on a mix of fixed and mobile nodes interconnected via wireless links
 - A fully wireless network that employs multihop communications to forward traffic en route to/from wired Internet entry points.
- A commercial extension of mobile ad hoc networks
 - Envisioned as the economically viable networking paradigm to build up broadband and largescale wireless commodity networks.

Why Wireless Mesh?

- □ Low up-front costs
- Ease of incremental deployment and maintenance
- □ Provide NLOS coverage
- Highly reliable
- Advantages of Wireless APs (over MANETs)
 - Wireless AP backbone provides connectivity and robustness which is not always achieved with selfish and roaming users in ad-hoc networks
 - Take load off of end-users
 - Stationary APs provide consistent coverage

Applications

- □ Metro-scale Community Networks
 - U-City, Mobile-City projects
- Campus Networks
- Local Area Networks
 - Hotels, Malls, Parks, Trains, etc.
- Home Networks
 - Coverage extension, Healthcare
- Ad hoc deployment of LAN
 - Public Safety, Rescue & Recovery Operation
- Tactical Wireless Networks
- Public Transportation Systems
 - Vehicle-to-Vehicle, Vehicle-to-Infra
- □ And more...
 - Logistics, Weather forecast

Wireless hot-spot / hot-zone map in Singapore

Research on WMNs: Topic-wide (1/5)

High-capacity and throughput enhancements

- Multi-channel MAC with Multiple/Single radio(s)
 - Spatial reuse
- Static and dynamic channel/interface assignment
 - Centralized or distributed algorithm
- Multi-channel/radio-aware Routing Protocol
- Power Control
 - To reduce interference and increase SNR
- Advanced Antenna Technologies
 - Smart antenna / MIMO (Multi-Input Multi-Output)

Research on WMNs : Topic-wide (2/5)

Design of Scalable Networking Functions

- Heterogeneous and hierarchical mesh network architecture
- Efficient broadcasting and multicasting
- Routing
 - Multi-path routing for load balancing
 - New routing metrics, such as LQSR (Link Quality Source Routing)
- Cross layer design
 - Routing-MAC
 - Routing-PHY
 - Transport-MAC

Research on WMNs : Topic-wide (3/5)

QoS Provisioning

- To support evolving applications like media streaming and VoIP
- □ IEEE 802.11e extension for multi-hop mesh environments
 - Multiple queues and priority support
- QoS aware routing and metrics
 - Available bandwidth, average delay, jitter, ...

Research on WMNs : Topic-wide (4/5)

Security

- Authentication, Privacy, and Reliability
- User data protection
 - Client to AP encryption
 - Authentication of APs and Clients to verify each other's identity
 - Current technologies: 802.1x port based network access control, IPSec, Application-level encryption
- Network data protection
 - Secure routing
 - Secure key distribution

Research on WMNs : Topic-wide (5/5)

System-wide Network and Resource Management

- Network auto-configuration
- Network monitoring
- Congestion control
 - Inter-flow vs. intra-flow
- Topology control
- Mobility management and hand-off
 - Fast hand-off is a key technology to support multimedia application (e.g. VoIP)

Mesh Networking in IEEE Standardizations

 Several IEEE WGs are actively working to provide wireless mesh networking extensions to their standards.

■ IEEE 802.15.5 — WPAN Mesh

□ IEEE 802.16a/j – WMAN Mesh

□ IEEE 802.11s — WLAN Mesh

IEEE 802.11s — WLAN Mesh

Motivation of WLAN Mesh standards

- Current 802.11 ad hoc mode is <u>not sufficient</u> for multi-hop, mesh.
- Recent efforts for the advance of 802.11 standards are <u>still</u> <u>limited</u> due to their inherent dependency upon the wired infrastructure backbones and the last, single-hop communication.

TEEE 802.11 TG "s"

- To design mesh networks consisting of different WLAN devices performing routing at link layer (layer 2)
- To be based on extensions to the current IEEE 802.11 architecture and protocols
- Specifically, to define an extended service set (ESS) mesh
- Recently, draft version 1.02 was released. (March 29, 2007)

IEEE 802.11s — Architectural Model

Targeted at <u>unmanaged</u> WLAN Mesh networks and at enabling <u>interoperability</u> with <u>low complexity</u>.

Internal L2 behavior of WLAN Mesh is transparent to higher layers

IEEE 802.11s — Functional Requirements

The set of services provided by the WLAN Mesh that support the control, management, and other operation, including the transport of MSDUs between MPs within the WLAN Mesh.

IEEE 802.11s - Key Functionalities (1/2)

Mesh Topology Creation

- Self-configuring neighbor discovery
- Channel selection
- Link establishment with neighbor MPs (Authentication/Association)

L2 Routing

- Mesh path selection and forwarding at the link layer
- Radio-aware metrics for routing (e.g., Airtime link metric function)
- Hybrid wireless mesh protocol
 - On-demand Path Selection Mode (RM-AODV)
 - Proactive Tree Building Mode

IEEE 802.11s - Key Functionalities (2/2)

MAC Enhancement

- To support QoS: recommended for use of EDCA in MPs
- To improve network capacity:
 - The usage of multiple channels and multiple radios
 - Efficient handling of the two different kinds of traffic (BSS traffic & Forwarding mesh traffic)
 - Intra-mesh congestion control

Security

- □ intends to take advantage of security mechanisms specified in 802.11i (completed in 2004).
- Multi-hop or end-to-end security is required.
- Association/authentication among neighboring MPs/MAPs is needed.

IEEE 802.11s — Current trends and usage

- Campus networking: Nortel WMN in National Taiwan University
- Community mesh networks: Cuwin at UIUC, Nokia Rooftop project
- Rural networking: Digital Gangetic
 Plain in India
- Intelligent Transport System
- Private networks for public safety
- Distribution network in buildings and enterprises etc.

Neighbor hood network

Rural networking

IEEE 802.16j – WMAN Relay/Mesh

IEEE 802.16 TG "j"

- Started in July 2005, as the MMR (Mobile Multihop Relay) SG
- Preliminary draft was released in Dec. 2006

Scope

- Support OFDMA PHY mode
- MAC enhancements to 802.16
- To enable the operations of a new base station (MMR-BS) & RS
- Backward compatible to PMP mode (unlike 802.16a/e Mesh mode)

IEEE 802.15.5 — WPAN Mesh

IEEE 802.15 TG"5"

- Established in 2004, considering both low-rate and high-rate WPAN (i.e., 802.15.3 and 802.15.4, respectively)
- In July 2006, they released a recommended practice document for WPAN mesh.

Proposed usage cases

- Low-rate applications
- Sensor networks, like ZigBee
- Control and maintenance networks
- High-rate applications
- Wireless streaming services for consumer electronics
- Interactive delay-sensitive applications, like online gaming

ZigBee Mesh Networks

ZigBee Wireless Mesh

- Based on the peer-to-peer communication supported in IEEE 802.15.4, the ZigBee network can create Wireless Mesh Topology
- ZigBee aims to create general-purpose, inexpensive, and self-organizing mesh networks
- Focused on low-rate embedded devices such as sensors

ZigBee Stack Profiles

- ZigBee $(2004\sim2006)$ Mainly for home automation and applications
- ZigBee Pro (expected 2007) For large scale mesh networks such as commercial and industrial control and automation