Mobility and Future Internet

Dec. 01, 2008
Kyung Hee University

Choong Seon Hong, cshong@khu.ac.kr
Outline

- Mobile IP
- Proxy Mobile IP
- Media Independent Handoff
- Site Multi-Homing by IPv6 Intermediate
- NEMO and 6LoWPAN
- Mobility in Future Internet
Outline

- Mobile IPv6
 - Mobile IPv6 Message
 - Mobile IPv6 Option
 - Mobile IPv6 Operation
 - Mobile IPv6 Handover

- Proxy Mobile IPv6
 - PMIPv6 Overview
 - PMIPv6 Operation Flow
 - PMIPv6 Features
Why Mobile IP

- **Motivation for Mobile IP**
 - TCP session needs to keep the same IP address for the life of the session
 - IP needs to change the IP address when mobile node moves to a new place
 - Consider the IP mobility problem as a routing problem

- **Requirement for Mobile IP**
 - Transparency
 - Compatibility
 - Efficiency and scalability
Mobile IP Operation

Home network A

Router

Home Agent

Internet

Network B

Network C

Corresp. Node C
Mobile IP Operation

- Mobile Node registers at its Home Agent

1. Mobile Node sends Binding Update
2. Home Agent replies with Binding Acknowledgement
Mobile IP Operation

Triangle Routing Problem

1. Node C initiates communication with Mobile Node and sends packets to MN’s home address
2. Home Agent intercepts packets and forward them to the Mobile Node (proxy functionality)
3. Mobile Node replies directly to Node C
Mobile IPv6
(Mobility Support in IPv6, RFC 3775)
IPv6

- Sufficient Address Space
- IPv6: 128 bits, IPv4: 32 bits
- Fixed IP Header + Extension Header
- Faster processing by routers
- Address Auto-configuration
- Address Renumbering
Introduction to Mobile IPv6

- Mobile IPv6 is intended to enable IPv6 nodes to move from one IP network to another.

- Mobile Node can be contacted using its home address regardless of its current point of attachment to the internet.
Mobile IPv6 Operation

- Mobile IPv6 operation can be divided into 3 parts
 - Discovering the Care-of Address
 - Registering the Care-of Address
 - Tunneling to the Care-of Address
Mobile IPv6 Operation

- Discovering the Care-of Address

1. Router Advertisement (include network prefix: 1::)

2. MN makes CoA

\[(1::) + \text{(MN’s MAC address)} = \text{B}\]
Mobile IPv6 Operation

- Registering the Care-of Address

1. Binding Update (CoA: B)

2. Binding Acknowledgement
Mobile IPv6 Operation

- Tunneling to the Care-of Address

Triangle Routing Problem

1. Packets
2. Tunneled Packets
3. Packets

Binding Cache
MN : A -> B

Dest:MN(A) Src:CN
Dest:B Src:CN
Mobile IPv6 Operation

- Route Optimization

1. Binding Update

2. Packets

Binding Cache
MN : A -> B

Internet

HA

MN (Home: A)

CN

Binding Cache
MN : A -> B
Mobile IPv6 Operation

Return Routability Procedure (1)

- MN sends two messages with a cookie to CN
 - Home Test init(Hti) is send via HA
 - Care-of Test init(Cti) is send directly to CN
- CN uses pre-generated key and nonce to build two keygen tokens (Key: random number of 20 octets, Nonce: random octet string of any length)
 - Home keygentok := FIRST (64, HMAC_SHA1 (key, (HoA | nonce | "0")))
 - Care-of keygentok := FIRST (64, HMAC_SHA1 (key, (CoA | nonce | "1")))
Mobile IPv6 Operation

- Return Routability Procedure (2)

- CN sends keygen tokens and cookies back to MN
 - Home Test(HT) and Care-of Test(CT) messages
- MN builds binding message key
 - \(\text{bmKey} := \text{SHA} \left(\text{home keygen token} \mid \text{care-of keygen token} \right) \)
- MN sends binding update message signed with bmKey
- CN can proof that the MN is reachable via both paths
Mobile IPv6 Operation

- Home Agent Discovery Mechanism
 1. Binding Update to Home-Agents anycast address
 2. Binding Acknowledgement including the Home Agents List; rejects the registration request
Mobile IPv6 Operation

- Home Agent Discovery Mechanism

1. Binding Update to Home-Agent4

2. Binding Acknowledgement, registration OK
Mobile IPv6 Handover

- What is a Handover?
 - Handover is the mechanism by which an ongoing connection between a Mobile Host and corresponding Access Point is transferred from Access Point to another.

- When does handover occur?
 - Cell boundary crossing.
 - Weak Signal Reception.
 - Deteriorated QoS in the current cell.
Mobile IPv6 Handover

- Three kinds of handover operations
 - Smooth Handover
 - low loss
 - Fast Handover, Hierarchical Mobile IPv6
 - low delay
 - Seamless Handover
 - Both Hierarchical and Fast Handover
Mobile IPv6 Handover

- Smooth Handover

- 1. BU

- packets

- tunneled packets

- old AR

- new AR

- MN

- CN
Mobile IPv6 Handover

- **Fast Handover**

 - RtSolPr (Router Solicitation for Proxy)
 - PrRtAdv (Proxy Router Advertisement)
 - HI (Handoff Initiate)
 - HACK (Handoff Acknowledgment)
 - F–BU (Fast Binding Update)
 - FBACK (Fast Binding Acknowledgement)
 - F–NA (Fast Neighbor Advertisement)
Hierarchical Mobile IPv6

1. **BU (LCoA)**
 - MN
 - RCoA(B)

2. **BU (RCoA)**
 - MN
 - LCoA(A)
 - RCoA(B)

3. **BU (LCoA)**
 - MN

- **LCoA**: Local Care of Address
- **RCoA**: Regional Care of Address
Proxy Mobile IPv6 (PMIPv6)
Background

- **Network-based Mobility**
 - Mobility handled by the network, often transparent to the mobile node
 - Directly or indirectly triggered by the mobile node

- **Host-based Mobility**
 - Mobility handled by the mobile node
 - Full involvement of the mobile node

A) Host-based Mobility Management

B) Network-based Mobility Management
Background

- Host-based Mobile IPv4/v6 (RFC 3344/3775) has not been yet deployed that much.

 - Why host-based MIP is not deployed yet?
 - Too heavy specification to be implemented at a small terminal
 - RFC 3344 (MIPv4): 99 pages
 - RFC 3775 (MIPv6): 165 pages
 - Battery problem
 - Waste of air resource

 - No Stable MIPv4/v6 stack executed in Microsoft Windows OS

- 3GPP, 3GPP2 and WiMAX operators are now showing their STRONG interests for network-based IP mobility solution

 - They are even now deploying their non-standardized network-based IP mobility solution (not Mobile IPv4/v6!).
Background

- WLAN switch device starts to provide link specific and proprietary solution for IP handover.
- No change in MN protocol stack required!

The solution works by tunneling traffic from the access point to the WLSM through your Layer 3 core network. No changes to the client devices or the underlying infrastructure are required.
Goal of PMIPv6

Goal

- This protocol is for providing mobility support to any IPv6 host within a restricted and topologically localized portion of the network and without requiring the host to participate in any mobility related signaling.
PMIPv6 Overview

LMA: Localized Mobility Agent
MAG: Mobile Access Gateway

IP Tunnel
IP-in-IP tunnel between LMA and MAG

Home Network
MN’s Home Network (Topological Anchor Point)

LMA Address (LMAA)
That will be the tunnel entry-point

LMM (Localized Mobility Management) Domain

Proxy Binding Update (PBU)
Control message sent by MAG to LMA to establish a binding between MN-HoA and Proxy-CoA

MN’s Home Network Prefix (MN-HNP)
CAFE:2:/64

Proxy Care of Address (Proxy-CoA)
The address of MAG
That will be the tunnel end-point

MN’ Home Address (MN-HoA)
MN continues to use it as long as it roams within a same domain

Movement

MAG

LMA

MAG

MAG

MAG
PMIPv6 Operation Flow

RA*: Router Advertisement in case of receiving MN’s Home Prefix from AAA

RA**: Router Advertisement in case of receiving MN’s Home Prefix from LMA
Future Mobile Network
Overview

Mobile Network in NGN

- **NGN Capabilities**
 - Basic IP Routing support
 - Mobility Support
 - Host Mobility
 - Network Mobility
 - Location management
 - Session control
 - Resource and QoS management
 - Security support

- **Network Environments**
 - Various wireless access technologies
 - WiBro, WLAN, WiMAX, HSDPA...

- **User requirements**
 - Seamless handover
 - Heterogeneous Network Interworking
 - Multi-Homing
 - User preference
Future Mobile Network Goals

- Ubiquitous access
 - Connection should be provided continually even though wireless access technologies are different with home domain

- Redundancy
 - Connectivity is guaranteed as long as at least one connection to the Internet

- Load Sharing
 - Traffics which are incoming and outgoing packets are transferred through more than one link
 - More efficient and possibly faster communication

- User Preference
 - Choose the preferred transmission technology or access network based on cost, efficiency, policies, bandwidth requirement, delay and so on
Future Mobile Network Scenarios

Seamless Handover

User Preference

Heterogeneous Network Interworking

Accelerate Transmission
To achieve Future Mobile Network goals, there are two key technologies

- **MIH** *(Media Independent Handoff)*
 - Provide heterogeneous handover (vertical handover)
 - Across different networks

- **SHIM6** *(Site Multi-Homing by IPv6 Intermediation)*
 - Provide multiple connection
 - Support ubiquitous access, redundancy, load sharing and user preference
 - No mobility function
IEEE 802.21
Media Independent Handoff
What is 802.21?

- IEEE 802.21 is being developed to facilitate smooth interaction and media independent handover between 802 technologies and other access technologies.

- IEEE 802.21 offers an open interface that:
 - provides link state event reporting in real time (Event Service)
 - provides intersystem information, automatically and on demand (Information Service)
 - allows a user to control handover relevant link state (Command Service)
Why are we here?

- Work actively within relevant standard bodies in order to introduce applicable IEEE 802.21 requirements (E.g., where does IEEE 802.21 fit?)
- Update relevant 3GPP2 groups with latest development in IEEE 802.21 standards
- Request your feedback and support in the determination of the optimal placement of IEEE 802.21 Functions
- Enthuse the 3GPP2 community about the development of requirement on IEEE 802.21 technology
Definitions

- **Media Independent Handover Function (MIHF):**
 - MIH is a cross-layer entity that provides mobility support through well defined Service Access Points offering Event, Information and Command services

- **MIH User:**
 - A local entity that avails of MIHF services through the MIH Service Access Points

- **MIH Network Entity:**
 - A remote entity that is able to communicate with an MIHF over a transport that supports Media Independent Services
IEEE 802.21 standard consists of:

- An architecture that enables transparent service continuity while a mobile node (MN) switches between heterogeneous link-layer technologies.
- A set of handover-enabling functions within the mobility-management protocol stacks of the network elements and the creation therein of a new entity called the MIH Function (MIHF).
- The definition of Media Independent Service Access Point (MIH_SAP) and associated primitives are defined to provide MIH users with access to the services of the MIHF.
- The definition of new Link Layer SAPs and associated primitives for each specific access technology.
The MIH Function provides three services:

- **Event Service** detects events and delivers triggers from both local as well as remote interfaces
 - E.g. Link_available, Link_up, Link_down, etc.

- **Command Service** provides a set of commands for the MIH users to control handover relevant link states
 - E.g. MIH_Link_Switch, MIH_Configure_Link, MIH_Handover_Initiate, etc.

- **Information Service** provides the information model and an information repository to make more effective handover decisions. The mobile terminal obtains information from the repository using its current network points of attachment
 - E.g. list of available networks, network operator, IP version, neighbor information, etc.
Design Assumptions

□ DOs:

 Cross-layer entity interaction with multiple layers
 Facilitate handover determination through a technology-independent unified interface to MIH users
 Facilitate both station initiated and network initiated handover determination

□ DON’Ts:

 Does not modify existing handover principles
 Does not mandate handover determination based on IEEE 802.21 events
Overall 802.21 Model

Legend:
- ES/CS/IS: Event Service/Command Service/Information Service
- LLC: Logical Link Control
- MAC: Medium Access Control
- MIH: Media Independent Handover
- PHY: Physical Layer

Diagram:
- Media Independent Handover Function
 - Higher Layer Transport Function (E.g., IP)
 - 3GPP2 Interface
 - 802 Interface
- Media Independent Handover Network Entity (E.g., MIH Server Controller)
 - Higher Layer Transport
 - Media Independent Handover Function
 - Higher Layer Transport /L2
 - 802 Interface
 - 3GPP2 Network
- Remote MIH Events /MIH Commands over L2 Transport
- Information Service over L2 Transport
- IS/CS/ES over higher layer transport

Key Terms:
- MIH: Media Independent Handover
- ES/CS/IS: Event Service/Command Service/Information Service
- LLC: Logical Link Control
- MAC: Medium Access Control
- PHY: Physical Layer
Site Multi-Homing by IPv6 Intermediation (SHIM6)

- Developed by SHIM6 WG in IETF
- Host based approach
- Features
 - ID and Locator separation
 - It is performed within host’s own protocol stack
 - No new name space for Identifier
 - Support backward compatibility
 - Mapping ID and Locator and associated state information is maintained at the IP level (L3SHIM)
 - Dynamically negotiated capability
 - Support Reachability Protocol (REAP)
Layering

- ID/LOC split – Basic Approach

Sender A

| src = ULID (A)
<table>
<thead>
<tr>
<th>dst = ULID (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIM MAPPING</td>
</tr>
<tr>
<td>----------------</td>
</tr>
</tbody>
</table>
| src = LOC (A)
| dst = LOC (B) |

Receiver B

| src = ULID (A)
<table>
<thead>
<tr>
<th>dst = ULID (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIM MAPPING</td>
</tr>
<tr>
<td>----------------</td>
</tr>
</tbody>
</table>
| src = LOC (A)
| dst = LOC (B) |

- Where is the SHIM

Transport Protocols

- TCP
- UDP
- DCCP
- ...

IP Endpoint Sublayer

- AH
- ESP
- Frag/Reassembly
- Destination Options
- Multi6 SHIM
- IP Routing
Initial Contact

No SHIM state active
Locator Selection using RFC3484
Locators and Identifiers are Equivalent
SHIM6 Activation

SHIM active
Current Locator Sets exchanged
Locators and Identifiers are Equivalent
Detect locator failure
Explore for functioning locator pair
Use new locator pair – preserve identifier pair
SHIM6 Control Elements

- Initial handshake (4-way) and locator set exchange
- Locator list updates
- Explicit locator switch request
- Keep alive
- Reachability probe exchange
Initial handshake (4-way) and locator set exchange

1. `getaddrinfo()` for www.ex.com
2. Return address
3. `connect()` for TCP or `sendto()` for UDP
4. Communication

State

- **I1-SENT**
 - I1 Message with initiator context tag and nonce
- **I2-SENT**
 - I2 Message with initiator’s locator’s set (addresses set)
 - R2 Message with responder’s locator’s set (addresses set)
- **ESTABLISHED**
 - Communication

State

- **IDLE**
 - ESTABLISHED
locator list updates

1. communication

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change locator set or preference, After UPDATE_TIMEOUT=4 or MAX_UPDATE_TIMEOUT=120</td>
<td>ESTABLISHED</td>
</tr>
<tr>
<td>"</td>
<td>ESTABLISHED</td>
</tr>
</tbody>
</table>

2. Update Request message with Locator List, Preferences

3. Update Acknowledgement

4. communication

www.ex.com

① communication
Keep alive and reachability probe exchange

Sender A (A1,A2)
- Send timer start
- Send timeout

Receiver B (B1,B2)
- Keepalive timer start
- Keepalive timeout

Payload packet (A1,B1)
- Keepalive message (A1,B1)
- Probe id=p state = exploring (A1,B1)
- Probe id=q state = exploring (A1,B2)
- Probe id=r state = inboundok received probe q (A1,B2)
- Probe id=s state = operational received probe r (A1,B2)
- Payload packet (A1,B2)
A Lightweight NEMO Protocol to Support 6LoWPAN: An Example
• We present a scheme to support mobility for 6LoWPAN sensor nodes.

• To provide mobility for 6LoWPAN nodes, we adopt the Network Mobility (NEMO) protocol.

• If NEMO is applied in the 6LoWPAN network, even though each 6LoWPAN node is not equipped with the mobility protocol, it can maintain connectivity with the Internet through the 6LoWPAN mobile router (MR) as a network unit.

• Thus, the network mobility of the 6LoWPAN sensor nodes can be supported by an interoperable architecture between 6LoWPAN and NEMO.

• We propose a new header compression scheme for mobility headers in 6LoWPAN networks.

• Moreover, we propose a Lightweight NEMO protocol for efficient support of the 6LoWPAN network mobility.
Problem Statement of 6LoWPAN Mobility

• Even though the network mobility concept is suitable for 6LoWPAN mobility, as in the NEMO Basic Support protocol, the current 6LoWPAN packet format cannot support efficient mobility for the 6LoWPAN MR.

• To support 6LoWPAN mobility, the 6LoWPAN MR needs to send a BU message and receive a BA message from its HA. However, the 6LoWPAN packet format only defines the fragmentation and mesh routing headers.

• Obviously, these messages are not sufficient to support the mobility of the 6LoWPAN MR because the structure of the 6LoWPAN packet has no solution to compress or support a mobility header for BU and BA messages.

• Therefore, we have to define a scheme to compress mobility headers in 6LoWPAN networks.

• To minimize the signaling overhead, a compressed mobility header can be used between the 6LoWPAN MR and the 6LoWPAN GW.
6LoWPAN network mobility for 6LoWPAN

Possible scenario of 6LoWPAN network mobility
A Lightweight NEMO Protocol for 6LoWPAN: Inter-PAN Mobility

1. Router Solicitation
- Beacon (PAN ID, Coordinator ID)
 - SRC: MR
 - DST: 6LoWPAN Gateway

2. Router Advertisement
- RS (Unicast Link-local address)
 - SRC: MR
 - DST: 6LoWPAN Gateway

- RA (Unicast Link-local address)
 - SRC: 6LoWPAN Gateway
 - DST: MR
 - 16bit-CoA option
 - 6LoWPAN prefix option (global prefix)

- Full Function Device
- 6LoWPAN Mobile Network Node
- 6LoWPAN Mobile Router
- 6LoWPAN Gateway (PAN-Coordinator)
Mobility in Future Internet
Mobility in the Internet

- Wireless speeds growing constantly:
 - 4G expected to achieve 40Mbps
 - WiFi up to 100Mbps
 - WiMAX up to 45Mbps
 - mmWave up to 3Gbps
 - Tera Hertz up to 10 Gbps

- Always Best Connectivity (ABC)
Mobility Support Problem

IP Address

Identifier

Locator
Existing Solutions

- **Network Layer**
 - Mobile IPv4/v6, PMIPv6

- **Transport Layer**
 - SCTP (Stream Control Transport Protocol)
 - TCP-Migrate

- **Application Layer**
 - SIP (Session Initiation Protocol)
 - DNS (Domain Name System)
Many Mobile IP Variants, but…

- MobileIPv4/v6
- HMIPv6
- FMIPv6

Scalability
Manageability
Adaptability
New Trends for Mobility Support

- **Identifier and Locator Separation**
 - Host-based vs. Network-based approaches
 - IETF Routing and Address Problem (RoAP)

- **Network-based Mobility Management**
 - Proxy Mobile IPv6: Operator-friendly
Paradigm Shift (1/2)

- **Traditional Wireless Mobility**
 - Last hop connectivity
 - Soft handoff (horizontal, vertical)
 - Most data and services still in the wired Internet
 - Advanced ad hoc networking only in *tactical and emergency scenarios*
Emerging Wireless Mobility

The data is collected by portable devices, and may stay on the devices for a long time:

- Urban sensing by vehicle or people

New challenges

- Distributed index to find the data
- Data sharing via opportunistic P2P networking
- Privacy, security, protection from attacks
- Intermittent operations: DTN (delay tolerant network)
Directions for Future Wireless Mobility

- Design for mobility requires a clean-slate approach to communication protocols in wireless networks and the Internet.
- Design for mobility has direct implications on the Internet design, in-network storage and localization information being key factors.
- Standards are needed for benchmarks.
A Clean Slate Approach (1/2)

- Exploit mobility, broadcast nature, and in-network storage!

- OSI/TCP architecture is no longer “the best”
 - **MAC layer**: should work on broadcast and directional transmissions
 - **Network layer**: Attribute-based queries, geo-location is important, resource discovery (no DNS)
 - **Beyond routing**: resource discovery replaces route discovery; need for binding of resources/services on the basis of names;
A Clean Slate Approach (2/2)

- Intermittent Connectivity
 - Lack of contemporaneous end-to-end paths
 - Disaster communication, Vehicular ad hoc networks
 - Ad-hoc/Sensor Networks, Inter-planetary networks
Changing The Internet Design (1/2)

- Use of storage and location information must be considered in the global routing design

- Use of location information: IPv6 can be used but we must find anonymous location information in addressing
 - Use of proxies and in-net storage
 - Privacy and security implications
Mobility creates a stronger focus on security

- We do not know the local neighborhood!

Opportunistic mobile routing infrastructures will become important

Mobility changes the expectations for services (anywhere, anytime), but maintaining performance with seamless mobility is difficult.
Role of Standards

- What should be standardized?
 - Benchmarking different protocols
 - Understand dynamics of system to understand what to standardize
 - Need for a reference model capturing connectivity structures/motion patterns and spanning different scenarios and protocols.
 - Look at the “connectivity structure” of a network (dense or sparse, guidelines)
New Wireless/Mobile Applications

- Distributed
- Integrating heterogeneous infrastructure and ad-hoc networking
- Location/Energy/User behavior-aware
- Exploit mobility
- Location privacy sensitive
- Self-configurable, self-tunable, remotely manageable
Example 1: Urban Sensing in VANETs
Example 2: Vehicle-Assisted Data Delivery

- Make use of the wireless transmission
 - Forward the packet via high density area
 - Use intersection as an opportunity to switch the forwarding direction and optimize the forwarding path

Geographically shortest path

Fast speed wireless communication
Example 3: Mobile Sensor Networks

- Applications
 - Air quality monitoring
 - Flu virus tracking

- Unique characteristics
 - Nodal mobility
 - Sparse connectivity
 - Delay/fault tolerability
 - Limited buffer/memory
Research Challenges (1/2)

- Mobile application design
 - Location-aware and mobility-exploited
- Performance and QoS
 - Delay tolerance, channel variations
- Cross-layer communication design
 - Exploit mobile application context information
- Security issues
 - Location validation and privacy, Trust management
Research Challenges (2/2)

- Mobile data management
- Fault tolerance and availability
 - In the presence of mobility
- Remote maintainability
 - Deployment, configuration, upgrade, debugging
- Application and service-oriented protocols
 - Over mobile networks
Mobility Model and Testbeds

- **Flexibility in Mobility Models**
 - Multiple scale models: Micro and Macro levels
 - Multi-faceted scenarios: Combines motion, data traffic, map, infrastructure
 - Trade off between accuracy and usability

- **Flexibility in Testbeds**
 - Heterogeneous hardware, protocols, applications
 - Broad range of motion patterns:
 - Broad range of devices: from motes to vehicles
GENI Wireless Mobility Testbeds

- Vehicular networks
- People to people networks
- Small scale - augmented by simulation (hybrid)
- Inter-operation
Campus Vehicular Testbed in UCLA

- **Campus Vehicular Testbed (C-VeT)**
 - A platform to support car-to-car experiments in various traffic conditions and mobility patterns
 - A shared virtualized environment to test new protocols and applications
 - Remote access to C-VeT through web interface
 - Collection of mobility traces and network statistics
New Vision: Information Mobility (1/2)

Terminal Mobility
Service Mobility
Personal Mobility

Information Mobility

Cloud computing in Future Internet
New Vision: Information Mobility (2/2)

Mobility

Cloud Computing

84
Conclusion

- Mobility is a key consideration in Future Internet!
 - It does not mean a connectivity issue!
 - Need reconsideration for Internet architecture!
Thank You!