<FISC 2008>

Security Issues in Future Internet

2008. 8. 26

School of EE Seoul National University Seung-Woo Seo

Contents

- Review on security
- Crypto and authentication protocols
- Security in TCP/IP
- Motivations for security researches for FI
- Integrated dependability and security evaluation
- Conclusions

What is Security?

- Managing a malicious adversary
- Guaranteeing properties even if a malicious adversary tries to attack
- Basic security analysis
 - What are we protecting?
 - Who is the adversary?
 - What are the security requirements?
 - What security approaches are effective?

Security Goals

- Confidentiality: restricted to legitimate members
- Integrity: no modification or deletion in any unauthorized way
- Authentication: verification of the actual sender
- Access Control: access allowed to only authorized parties
- Non-repudiation: The sender cannot deny sending the message
- No denial-of-service: sustaining of the service
- And many others ...

Basic Approaches for Security

- Prevention
 - Attack prevention mechanisms used to prevent or complicate specific attacks
- Detection and recovery
 - Attack detection mechanism is in place, recovery phase initiated after attack detected
- Resilience
 - Despite undetected attacks, security property continues to hold
- Deterrence
 - Use of legal system to provide disincentive for attacks
- How can these approaches be used to achieve secrecy, integrity, availability?

Crypto and Authentication Protocols

Taxonomy of Cryptography

From "Information Assurance" by Qian, et al.

7

Authentication

- Alice must prove her identity to Bob
 - Alice and Bob can be humans or computers
- May also require Bob to prove he is Bob (mutual authentication)
- May also need to establish a session key
- May have other requirements, such as
 - Use only public keys
 - Use only symmetric keys
 - Use only a hash function
 - Anonymity, plausible deniability, etc., etc.

Authentication

- Authentication on a stand-alone computer is relatively simple
 - "Secure path" is the primary issue
 - Main concern is an attack on authentication software
- Authentication over a network is much more complex
 - Attacker can passively observe messages
 - Attacker can replay messages
 - Active attacks may be possible (insert, delete, change messages)

Simple Authentication

- Simple and may be OK for standalone system
- But insecure for networked system
 - Subject to a replay attack
 - Bob must know Alice's password

Challenge-Response

- To prevent replay, challenge-response used
- Suppose Bob wants to authenticate Alice
 - Challenge sent from Bob to Alice
 - Only Alice can provide the correct response
 - Challenge chosen so that replay is not possible
- How to accomplish this?
 - Password is something only Alice should know...
 - For freshness, a "number used once" or **nonce**

Authentication with Symmetric Key

- Secure method for Bob to authenticate Alice
- Alice does not authenticate Bob
- Can we achieve mutual authentication?

Security in TCP/IP

"Security Problems in the TCP/IP Protocol Suite"

- Paper by Steven Bellovin
- Interesting historical perspective
- Wakeup call for networking researchers, listing many security vulnerabilities
- Some of the possible attacks
 - IP level attacks
 - TCP level attacks
 - Routing attacks
 - ICMP attacks
 - Application-level attacks

Security Issues in Broadcast Networks

 Security issues for communication between A, B, C, and Server?

Other IP Level Attacks

- IP fragment attack
 - Host stores fragments until entire packet arrives
 - Attack: send individual fragments only, host wastes memory to store them
 - Countermeasure?
- Smurf attack
 - Send packet with broadcast address to network, spoofing victim
 - All hosts on the network will send reply packet to victim
 - This is called a reflector attack, in this case the reflector also performs traffic amplification

TCP Level Attacks: TCP Primer

- TCP provides reliable data transfer using the best effort IP service
- Typical TCP packet exchange
 - $A \rightarrow B: SYN(ISN_A)$
 - $B \rightarrow A: SYN(ISN_B), ACK(ISN_A)$
 - $A \rightarrow B: ACK(ISN_B)$
 - − A \rightarrow B: data ...
- Issues?

Other TCP Level Attacks

- TCP SYN flooding
 - Exploit state allocated at server after initial SYN packet
 - Extensive flooding exhausts server's memory
- TCP hijacking
 - If TCP sequence numbers are known, attacker can inject malicious information into TCP stream
- TCP poisoning
 - Inject random data into TCP stream to shut down TCP connection
 - Does sequence number need to be known?
 - How many packets are required?

Motivation for Security Research in FI

Status of Internet

- Driving engine for economy and social networking
 - In Korea, market size has grown up to \$5370Billion in 2006
 - Social networking traffic like CyWorld has increased up to 12% of total Web traffic in 2007 (BusinessWeek, 2007.6.)

Very diverse requirements for Internet

Necessity of Future Internet

 Research on Future Internet under diverse requirements has just begun

Current Status of Internet Security

- Limitation on current security technology
 - Separation of security function from network
 - Independent deployment of virus vaccine, spam filter, IDS, Firewall, VPN, etc. in each layer and application whenever necessary
 - Passive detection and prevention
 - Passive reaction by relying on the decision of human
 - Long delay until action, which allows additional attacks
 - More importantly, integrated end-to-end security measures are not available
 - Local detection of worm, DDoS and Bot
 - Each domain has its own security measures
 - No correlation among security technologies
 - No integrated end-to-end security measures

Change of Security Service Paradigm

⇒ Security is no more an option, but a necessity that should be considered at the initial stage of network design.

Direction of Security Research for FI

Mapping of Security Requirements

- Classification of security levels
 - Service profiling for security requirements
 - Classification and mapping to network configurations
- Network service
 - Secure and robust service in network layer which is resilient to external perturbation

Design Considerations

- Non-overlapped security service
- Configurability
- Balance between privacy and security
- Balance between availability and security
- Automated diagnosis (self-diagnosability)
- Security audit

Information Assurance

- Convergence of security and dependability
 - Protection of critical information and resources must be provided
 - Networked information systems must function correctly in various operational environments
- Ensuring to provide an assured level of functionalities in the presence of disruptive events
 - Survivability, resilience, disruptive tolerance, etc.
- Integrated framework for security and dependability

Integrated Dependability and Security Evaluation

Failure Process

- *"Fault-Error-Failure"* Pathology
 - Can be used to model security failures in a similar way as the dependability community
 - *Fault* : an atomic phenomenon that can be either internal or external, which causes an *error* in a system
 - *Error*: a deviation from the correct operation of a system, which may lead to a *failure* of a system
 - *Failure* : an event that causes a system service to deviate from its security requirements
- Intrusion
 - The result of the external malicious human-made faults
 - Because they are intentional in nature, intrusions cannot be modeled as truly random processes.
 - Even though the time, or effort, to perform an intrusion may be randomly distributed, the decision to perform the action is not

Modeling Intrusion as Transitions

- Modeling failure rate
 - $\pi(a)$: the probability that an attacker will choose action *a* when the system is in state *i*
 - $\lambda_{ij}(a)$: the accumulated failure intensity if all *n* potential attackers always take action *a*
 - failure rate between *i* and *j*

$$q_{ij} = \pi_i(a)\lambda_{ij}(a)$$

- System measures
 - Based on CTMC model, measures, i.e., MTFF, MTTF can be obtained

Model Parameterization

- Accidental failure, repair rate
 - The procedure has been practiced for many years in traditional dependability analysis.
- *Obtaining* $\lambda_{ij}(a)$ is challenging
 - To let security experts assess the intensities based on subjective expert opinion, empirical data, or a combination of both.
 - To collect information from a number of different sources in order to predict attacks
- *Obtaining* $\pi(a)$ is more difficult
 - To use game theory as a means for computing the expected attacker behavior

Predicting Attacker Behavior

- Motivation for attacks
 - Financial gain : credit card theft, blackmailing, or extraction of confidential information
 - Entertainment : hacking web sites or rerouting Internet browser requests
 - Ego : overcoming technical difficulties or finding innovative solutions
 - Ideology : likely to increase in the future
 - Entrance to a social group of hackers : writing a particular exploit, or breaking into a particularly strong computer security defense
 - Status : the most powerful motivation factor
- Demotivation
 - Attackers may be risk averse
 - The illegal aspect of actions (criminal offense) may prevent even remote attackers to use available tools to exploit vulnerabilities in corporate networks

Reward and Cost Concept

- Reward
 - An attacker accumulates reward during the events of an attack
 - Whenever an attacker performs an attack action, he receives an immediate reward.
 - If the action succeeds, an additional reward (expected future reward) may be gained.
 - The expected amount of recovery effort required from a system administrator
 - The degree of bandwidth occupied by a DDoS attack
- Cost
 - A negative reward is used to quantify the impact on an attacker as an attack action is detected and reacted to.
 - Risk-averse attackers may sometimes refrain from certain attack actions due to the possible consequences of detection.

Modeling Interactions as a Game

The interaction between an attacker and a system modeled as a game

- A two-player, zero-sum stochastic game
 - Compute the expected attacker behavior in terms of a set of attack probability vector π .
 - Since the game is zero-sum, an attacker's gain is the system's loss.
 - Does not assume that the attackers know the system outcome values.
 - The purpose of the game model is to predict the behavior of attacker and not to perform any cost-benefit optimization of system defense strategies.

Conclusions

Goal of Security Research:

Design of Security Architecture for Future Internet with ~100% guarantee of C, I, A, and A

- Find the most fundamental prevention mechanisms against security attacks
- Desirable if self-restoration feature is incorporated
- Must develop efficient security policies for Future Internet

