The ANA Project:
FISS 09

ANA Blueprint

dlld

autonomic

network architecture

G. Bouabene (UBasel)
Bremen, Germany
July 20, 2009

« The Internet suffers from architectural stress:

. Not ready to manage the envisaged huge
numbers of devices

. New technologies (sensor networks, mobility,
personal area networks etc)
difficult to integrate

. Lacks integrated monitoring and security
mechanisms

. Other issues such as quality of service and maore.

2
I

« Variability in the Internet is above and below IP: it's the "hour-
glass" model.

ﬁ-

— www, email, fip, ssh, DNS,
Application peer-to-peer (eMule, BitTorrent)
layer VolP (Skype), VoI, grid, ...

N

l P alzo called the “wast” of the Intermet

ik \ Ethernet, wifi (802.11), ATM,

laver * SONET/SDI, FrameRelay,

I] modem, ADSL., Cable, ...

Changing/updating the Internet
core {e.g., [Pvh, Multicast, MIP,

Qos, ...} is difficult or impossible !

e Solutions adopted so far :

« Patches to cope with challenges contradict the initial
design paradigms

« Incoherences - patches to the patches

a next step beyond the Internet is needed.

[Consensus in the research community that]

e Projects and initiatives such as
. GENI, FIND (USA).
. FIRE (EU): 4WARD, Onelab2, Trilogy
¢ In the literature:
. Plutarch, NewArch (RBA, FARA), Turfnet, Selnet.
. Ambient Networks.
. RMNA: Recursive Network Architecture at [SI.
. ... and many more (old and new).
« Partial proofs of concept, no full architecture (yet).
. Selnet, M-FARA, Ambient Networks.

2
I

[Dur contribution: enable & demonstrate autonomic nehvarking.}

« ANA abstractions allow variability at all levels of the
architecture:

s variants to perform a given task,
. and networks co-exist and (can) compete, open
for extensions (evolution)

]
I

o Static/rigid standards instead of mechanisms for change
management

. Global address space (requires uniqueness and global
coordination)

« Leaking of and relying on network internal details

. Built-in address dependency (i.e. address-centric
architecture)

« To avoid running into such pitfalls, we adopt an incremental
approach via prototyping cycles

. Helps revealing faults or black-holes in the
architecture design

/
I

« Projectis articulated around 2 prototyping cycles.
s Methodology: design, test/validate, refine.

I 2006 | 2007 | 2008 | 2009 |

Design phase
First "Blueprnnt”
{architectural model)

First prolotyping 2nd prototyping

hase hase .
: Testing + feedback : Final
phase evaluation

2™ design phase
Mature "Blueprint”
8
I

ANA Blueprint
a look from inside

« ANA does not want to propose another "one-size-fits-all
network waist”.

. AMA is a meta-architecture to host, interconnect and
federate multiple heterogeneous networks

—

Application
layer

Multiple "network =
instances”
can co-exisl

ANA framework

Link
layer

« ANA abstractions:

. Compartment.
. Information Channel (IC).
. Information Dispatch Point (IDP).

. Functional Block (FB).

¢ More tricks with compartments:
. "Node compartment”,

. Owverlays and compartment inter-stitching.

11
D

« Compartment = wrapper for networks.

« ANA does not impose how network compartments should work
internally: the ANA framework specifies how networks interact.

(—— .
ANA specifies
interfaces and Internal

interactions with o “i‘_":'“li““
is not

imposed

any neiwork
Ei'il'llp.'ﬂ.nﬂ'll.,'-l'll

leading to multiple and
hﬂl.!fﬂgl.-'l'lﬂl'lu-“- l.fl-'f'l'ﬂ]'-lﬂl"Tﬂ'l.-‘ﬂ'l“

but geneénc interaction
S

\ ANA framewurg/

« A (network) compartment defines how to join and leave a compartment:
member registration, trust model, authentication, etc.

. Each compartment defines a conceptual membership database.
. Registration; explicit joining and exposing is required ("default-off”
model).

~
%
i
1
|
f

e e i i i g i e

g

publish(“A")

How ragestralion i
peroemed i3 specilic 1o
each compartment

h

&

s i il i i o WA 13

Defines How to reach (communicate with) another member: peer
resolution, addressing, routing, efc.

Resolution: explicit request before sending ("no sending in the

void").

b
%
]
]
I
r
-

L —————————

i
L]
]
]
]
]
i
L]
]
]
]
]
1
i

= L R

RN
= -
5

Rasolition process
PR SOMTLInR A

By o e ——— i —

» Compartments can be overaid, i.e. compariments can use the
communication services of other compartments.

. compartment abstraction serves as the unit for the federation of
networks into global-scale communication systems.

* Has interaction rules with "external world®, the compartment
boundaries (administrative or technical), peerings with other
compartments, etc.

L
CC_Y

12

Compartments decompose communication systems and
networks into smaller and easier manageable units.

L
[

Addressing and naming are left to compartments.

Each compartment is free to use any addressing and naming schemes

(or is free to not use addresses, for example in sensor networks).

The main advantages are:

. Mo need to manage a unigue global addressing scheme.
s No need to impose a unigue way to resolve names.
. ANA is open to future addressing and naming schemes.

The main drawbacks/challenges are:

. Back to the CATENET challenges : How to inter-work in such
heterogeneous address/name spaces 7

17
D

« Target resolution returns a local label = IDP

. Addresses (if any) and names (if any) limited as input for
resolution
. The IDP maintains the state to reach the destination

T
%
|
|
I
v
-

i |
i |
I i
I [
I i
I Resolilion process |
I ralums cammunicatian 1
: antry paint & :
I 1
I [
I i
i 1
LY I

= Applications send data only to IDPs

+ Bound to a flexibe element

o+ O E—
I
data 15 sent o IDP
Mame'nddress

Startpoints instead of endpoints.

« Resolution process returns access to an "information channel”
that can be used to reach the target member(s).

. Various types of information channels.

- P

unicast multicast anycast concast

« ANA abstractions:

. Compartment. v
. Information Channel (IC). ¥
. Information Dispatch Point (IDP). ¢

. Functional Block (FB).

¢ More tricks with compartments:
. "Node compartment”,

. Owverlays and compartment inter-stitching.

21
I

Code and state that can process data packets.

Protocols and algorithms are represented as FBs.

FBs implemant the Information Channeals (abstract entities)

Access to FBs is also via information dispatch points (IDPs).
FEs can have multiple input and output IDPs,

. FB intarnally selects outpul IDP(s) lo which dala is sent.
/.-- .FH FR

data is sent 1o [DP

which has state io

cill eomect function

inzude FR

FBI1 I FB2

A network compartment has different views, for different usage.

[Tl"ltll'l:l'ﬂ"l-'l'lh'l'lhﬂl'ltllll'ruﬂl ofd IDF “mappsd" in s difscant viewa

Mgy compan mant Hada compasimant

Underlying

Sard to mdium Listen 16 masdem Hardwara
{Eihe ret, wifl, #1z) (Etharrast, wili, i) 25

+ Organize a node's functionalities as {compartment) members:
« Member database: catalog of available functions.
« Hesolution step to access a given function.
« Also implements access control.
« Hesoclution instantiates functional blocks (Fbs).

« The node compartment hosts/executes FBs and IDPs.

Mods Comparimert

Nl

Applications Legacy apps
l sockels
i M o i =
' Adaptation layer !
s =m == e == === === =
i ANA Playground + API
]
]
I COMPATMats,
: leaming logic,
i sarvice chacker,
: IP overlay,
i mongaring,
MINMEX | [Information J turd.
controller | [Dispatch Table| | p2p,
1 AN ﬂjh Fi
i
......................... R e e o e
Flatform abstraction layer {oplional)
2 S I il ~~ ©

« Ariane Keller, Theus Hossmann, Martin May, Ghazi Bouabene,
Christophe Jelger, and Christian Tschudin, A System
Architecture for Evolving Protocol Stacks, in Proceedings of
the 17th International Conference on Computer
Communications and Networks (ICCCN'08), August 2008, St.
Thomas, USA.

« Ghazi Bouabene, Christophe Jelger, Christian Tschudin, Stefan
Schmid, Ariane Keller, Martin May, The Autonomic Network
Architecture (ANA), submitted to JSAC special issue on
Recent Advances in Autonomic Communications.

« ANA Blueprint: version 2.0

Thank you for your attention.

The ANA Project:
FISS 09

ANA Communications API

G. Bouabene (UBasel)

Bremen, Germany

July 20, 2009

autonomic

network architecture

» Network compartments are free to internally run whatever
addressing/naming schemes, routing protocols, etc.

= The "glue" for all interactions in ANA is the compartment
API.

» All network compartments must support the APl in order
to allow all possible interactions between compartments.

—

Overview

» The API offers 6 fundamental primitives.

IDP, publish (IDP,, CONTEXT, SERVICE)
int unpublish (IDP,, IDP,, CONTEXT, SERVICE)

IDP, resolve (IDP., CONTEXT, SERVICE, chanType}
int release (IDP,, IDP,)

void® lookup (IDP_, CONTEXT, SERVICE)
int send (IDP,, DATA)

—

CONTEXTS and SERVICES

» The SERVICE argument is typically what is being published or
looked up.

. e.g., an address, a name, a file, a video stream, a
printing service, etc.

« The CONTEXT defines some scope inside a compartment.
. IPv4: 1.2.3.4, 224.0.0.1, 10.1.2.255.
. IPv6: 2001::1, FF02::1, ::1.

. eMule: Madonna, Pink Floyd, Blade Runner.

e mam

CONTEXTS and SERVICES

« We have currently specified two "well-known" CONTEXT
value.

. "." < node-local

. "** = largest possible scope as interpreted by the
compartment

Examples:

« |Pv4 compartment:
" . DBB 255,255,255 " " 127.0.0.1

« Ethernet:
o~ FF:FFEFFFF:FFFF "." ~ local address

—

Using the API: some examples

Publishing an |IPv4 address in the Ethernet

compartment.
Node M
'/ u=--|=5:ﬂ\‘~i
1

e e i e .
1 |
: Ei" publish
. :
: |

Ethernet |
I" ﬂmﬂvﬂ-ms Jlt — —lk‘ :-1: 11-?-3-: ::.j = HJ ./

z <-- publish(y, "*", "10.1.2.3")

—

Using the API: some examples

Resolving an |IPv4 address in the Ethernet
compartment.

How B reciution i pedfoimad
s commpartment spociic
(= 0. broadcasi message sam 1o
FF-FFFFFFFF-FF)
\- niode W _:#- ----------- k_ ------ - no-da “J
Ethernat
Campartment

s <-- resolve(e, "*", "10.1.2.3")

—

Using the API: some examples

Sending data.

send(s, DATA)

Using the API: some examples

Releasing an information channel.

. SRR T
P.FE : ﬁ.
F*';;:;J:-*._. e cwes [E

ode N :“ ------ - - S ' e "'\..: node 4/

release(e, s)

—

Using the API: some examples

The lookup primitive.

List of hosts <-- lookup(d, *, “Chat")

with IDP 'd' bound to the Ethernet compartment.

List of songs <-- lookup(r, "Rock”, "Hendrix")

with IDP 't bound to some online Juke-Box

compartment. | i

» The lookup primitive requires further work in order to better
define its role and the format of the data it returns.

« e.g. Lookup can be seen as a way to extract inner-network
infomation :

List of next hops € lookup(d, “1.2.3.4", “TCP")

with IDP 'd' bound to the IP compartment.

e e

Helat:éd publications

The APl was presented in the following papers:

« (. Bouabene, C. Jelger, and C. Tschudin, Virtual Network
Stacks, SIGCOMM PRESTO Workshop, Seattle, USA, August
2008.

» Ariane Keller, Theus Hossmann, Martin May, Ghazi Bouabene,
Christophe Jelger, and Christian Tschudin, A System
Architecture for Evolving Protocol Stacks, in Proceedings of
the 17th International Conference on Computer Communications
and Networks (ICCCN'08), August 2008, St. Thomas, USA.

—

Questions ?

Thank you for your attention.

The ANA Project:
FISS 09

ANA Core implementation

dlld

autonomic

network architecture

G. Bouabene (UBasel)

Bremen, Germany

July 20, 2009

« First public release of software done on July 2008.

* Release of the second prototype done in February 2009.

« Prototyping in ANA is a key research instrument.

. "Learn by doing", "Grow the architecture”.
* Rationale: a constant prototyping effort is part of the
research

» Helps validate good established concepts
« |dentifies faulty architectural concepts

+ Points out concepts left behind

—

Applications Legacy apps

ANA Playground + API

compartments,

leaming logic,
sendos chocker,

I
i
I
i
]
]
]
I
] i overy
I
I
I
I
i
I
I

nitoring,
MINMEX | [Information s

PFlatfarm OGS

Two main componenis:

= The MINMEX i.e., the ANA "micro-kernel”

. Supports core APl and inter-brick communications.
. Implements packet dispatching to IDPs.
. Implements the Node Compartment.

» "Bricks" i.e., individual components of the ANA Playground

* Can be a functional block which offers access to a network
compartment.
. Can also provide processing support (e.g. encryption),

—

The ANA node can be distributed.

+ We do not enforce that all the components of an "ANA Node” run
on the same computer.

. The MINMEX and its bricks can communicate via various

IPC types called "gates”: Unix/UDP sockets, named pipes,
generic netlink.

B The motivation was that the notion of a "node” was not
restricted to being a physical device.

—

Three different API levels.

+ (Objective: better understand the level of complexity vs. flexibility
we want to reach.

. API Level 0: maximum flexibility but developer must know
all the details for encoding and decoding messages.

. AP| Level 1: good flexibility and developer can use
functions to encode and decode messages.

. AP| Level 2: less flexibility, but function prototypes are very
ease to use, code is easy to write.

—

One code, multiple platforms.

+« The base code compiles as either userspace application or Linux kernel

madules
. Userspace: easy for development and debugging, easy to use,
most people can use it.
. Linux kernel: for best performance, permits to interact with kernel

network internals,

» The code has been ported to MacOSX and portable devices : iPhone,
Android, NokiaB0x

« We also started a support for ANA bricks written in the Erlang
Programming language

—

One code, multiple platforms.

« Bricks can be developed in a "platform-agnostic” way according to
a standard template.

. The APl library provides wrapper functions and
mechanisms to properly handle function calls (e.g., malloc
vs. kmalloc, main vs. init)

. We also provide "agnostic” libraries for system-specific
functions such as threads and timers.

. Passing arguments to bricks via CLI is also done via a
system-agnostic mechanism (a la argc/argv| |).

« MINMEX: node compartment, IDT, IDP manipulation, status
interface, API libraries.

+ Bricks:

-

Ethernet and IP compartments.
vlink sub-system for flexible "cabling” of ANA nodes.

Monitoring components: core part, packet capture,
measurements (CPU, net load), "ping".

Inter-compartment routing with regular expressions.

ﬁ

. Content centered routing, Field Based routing
. Functional compaosilion prototype.
. User side: chat application, various code examples.
. And many other bricks of project partners
« Tools
. QuickRep, timers, threads, Remote IDP Access

e

= Plugin model for the Minmex :

Allows for easy extension of minmex functionality

.50 plugins for user-space

ko plugins for kernel

Allows to attach bricks directly to the minmex

» Direct function calls - good performance

IPC handling at the minmex in a separate plugin

+ Releaves the minmex from some code complexity

—

Plugin model for the Minmex :

EE 2

MINMEX

i plugin Genetlink, PIFES &
brick

@ Data gate @ Control gate

—

« Easy build system :
. Operates via a front-end control file

. Allows users to indicate which bricks to compile and in
which mode (user-space or kernel)

» Template makefiles provided to ease brick's integration

The prototype also incorporates novel architectural concepts :
« |DP information repository :

. Allows to store and retrieve information regarding IDPs.

. The information contains :
+ The view to which the IDP belongs
+ In case attached to a local brick : the next hop IDP

¢ Incase to an IC :the CONTEXT and SERVICE of the
destination and the MTU of the channel

—

The prototype also incorporates novel architectural concepts

« Event Notification system :

» Allows bricks to keep alert regarding events in the node

compartment
. Works in a pub-sub fashion
. The events notify about :

« Deletion, redirection, IDP busy/down, info change of IDPs

+ Attachment, Detachment of bricks to the minmex

ﬁ

Thank you for your attention.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

