What QoS for the future Internet?

Jim Roberts
ex France Telecom (soon INRIA)

FISS 2009 University of Bremen 22 July 2009

QoS research and the future Internet

- a future Internet for enhanced security, mobility management and QoS
 - addressed diversely in research projects throughout the world
- major innovations are emerging like
 - content-centric networking
 - network virtualization
 - enhanced network management
- but do we have a clear idea about enhancing QoS?
 - implement the models that have already been defined
 - or invent a new paradigm?

The dual role of QoS

- perform effective traffic management
 - to meet diverse application requirements
 - for delay, jitter, loss, throughput,...
- create a viable business model for the network operator
 - a range of differentiated services
 - to maximize revenue and avoid commoditization
- a source of some confusion!

Outline

- Traffic and congestion
- · Myths and mystification
- · Managed or unmanaged Internet

Understanding traffic at flow level

- · users experience quality at flow level
 - a flow is an instance of some application (document transfer, voice signal,...)
 - a set of packets with like header fields, local in space and time
- · flows of four types
 - conversational, streaming, interactive data, background
 - with different requirements for latency, integrity, throughput
- an essential characteristic: the flow rate
 - constant or variable, high or low peak rate

Two essential traffic characteristics

1. the mix of flow rates

2. the link load

Transparent bandwidth sharing

- all flows have relatively small rate
- offered load is somewhat less than capacity ⇒ no rate excess
- excellent quality for all
- this is "QoS by over provisioning"

Performance in the transparent regime

- predictable packet level performance:
 - flows combine to produce a "better than Poisson" arrival process
 - ⇒ a modulated M/G/1 queue is a conservative model
- negligible delay at normal load (<90%)
 - e.g., one 1500B packet at 1 Gb/s \Rightarrow 12 μ s
- performance is insensitive to detailed traffic characteristics
 - e.g., to self-similarity in flow or aggregate arrival processes

not true if overall rate can exceed capacity!

Maintaining the transparent regime

- max utilization depends on link rate to peak rate ratio
- this is typically high for most flows on shared links
- but some high rate flows may occur: inter-server flows, physics labs,...

max utilization

link rate / peak rate	Pr [excess rate]		
	0.01	0.001	
10	48%	38%	
100	79%	73%	
1000	92%	90%	

Elastic bandwidth sharing

- some flows have high rate
- offered load somewhat less than capacity
- need to control sharing
 - · to avoid loss to low rate flows
 - to ensure "fair" sharing

Performance in the elastic regime

- a "processor sharing" model of bandwidth sharing
 - assume all flows of unlimited rate, Poisson flow arrivals, instantaneous fair sharing
 - → M/G/1 processor sharing model
 - Pr [n flows] = ρⁿ (1 ρ)
 - E [response time] = size/C(1 ρ)
- same results apply for more general traffic
 - Poisson <u>session</u> arrivals, alternating sequence of flows and think times (with general distributions, correlation)

Performance in the elastic regime (2)

- extension to unfair sharing (discriminatory PS) cf. Fayolle et al. 1980
 - (somewhat) sensitive performance
 - little discrimination at normal loads
- accounting for peak rate limit
 - performance for equal rate or "balanced fair sharing"
 - E [throughput] ≈ min {peak rate, C(1 ρ)}
- performance typically excellent, depending only on p
 - for more info, cf. Bonald et al., Queuing Systems, 2006

class 1: share oc 10

Controlling the elastic regime

- if elastic flows are suitably responsive to congestion, quality of low rate streaming flows may be adequate
 - small buffers and ECN to limit delay
 - but what incentive for users to be "TCP friendly"?
- economic incentives for congestion control
 - eg, a "self-managed Internet" (F. Kelly, 2000):
 - a charge for each ECN mark, reduced rate ⇒ reduced charge
- but congestion pricing is unacceptable, prefer network imposed fairness?

Overload and bandwidth sharing

- offered load exceeds capacity (ρ > 1)
 - elastic flow throughput → 0
 - and/or high streaming flow loss
- need for overload control
 - discriminate against some flows
 - · discriminate against some classes of traffic

Performance in overload

- processor sharing models are unstable (p > 1)
 - number of flows in progress increases indefinitely
 - flow throughput tends to zero
- in practice, quality degradation is mitigated
 - by adaptable applications, user impatience
 - by the slow onset of congestion for heavy tailed flow sizes
 - by the presence of non-elastic flows that suffer loss
- but some safeguard seems essential

Outline

- · Traffic and congestion
- · Myths and mystification
- · Managed or unmanaged Internet

Class of service differentiation

- myth
 - methods exist to realize SLAs of designated classes
- mystification
 - three colour token bucket traffic classifiers...
 - complex class-based schedulers in routers...

Service Closs	Service Characteristics	CoSID	Bandwidth Profile per EVC per CaS ID	Service Performance
Preniu n	Real-time IP telephony or IP video applications	6, 7	CIR > 0 EIR = 0	Delay < 5ms Jitter < Ins Loss < 0.001%
Silver	Bursty mission critical data applications requiring low loss and delay (e.g., Storage)	4, 5	GIR > 0 EIR : UNI Speed	Delay < 5ms Jitter = N/S Loss < 0.01%
Bronze	Bursty data applications requiring bandwidth assurances	3, 4	CIR > 0 EIR : UNI Speed	Delay < 15ms 15ms Jitter = N/S Loss < 0.1%
Standa	Best effort service	0,21,	CIR=0 EIR=UNI speed	Delay < 30#s Jitter = N/S Loss < 0.5%

Differentiation <u>is</u> useful to preserve the quality of priority traffic

- · priority traffic sees a transparent regime
- implement differentiation by
 - priority queuing, loss priorities, class-based queuing, etc.
- but how is the priority traffic determined?
 - what criterion, who decides

Multiple criteria for defining priorities

- differentiating application requirements
 - conversational, streaming, interactive data, background data
- differentiating services and/or users
 - priority to operator's "managed services"
 - tiered service offering to other providers
- · differentiating user reliability requirements
 - "five 9s" reliability for business subscribers
- differentiating applications
 - filtering P2P traffic
 - no VoIP on 3G wireless

Limited scope for performance guarantees

- can effectively distinguish latency critical and throughput critical applications
 - e.g., conversational & streaming vs interactive & background data
- but no scope to distinguish degrees of guaranteed latency or throughput
 - excellent quality at normal load, too bad in overload

Performance depends on demand and capacity

- e.g., the M/M/1 queue
 - E [delay] = $\tau \rho / (1 \rho)$, τ = packet time, ρ = link load

Delay/Load Tradeoff

Cisco.com

If I Can Keep EF Traffic < α %, I Will Keep EF Delay Under *M1* ms If I Can Keep AF1 Traffic < β %, I Will Keep AF1 Delay Under *M2* ms

Performance depends on demand and capacity

- e.g., an M/M/1 queue
 - E [delay] = $\tau \rho / (1 \rho)$, τ = packet time, ρ = link load
- very little scope for service differentiation
 - quality of service is "good" or "bad"
- a need for overload control (when ρ≥ 1)

Limited scope for performance guarantees

- can effectively distinguish latency critical and throughput critical applications
 - e.g., conversational & streaming vs interactive & background data
- but no scope to distinguish degrees of guaranteed latency or throughput
 - excellent quality at normal load, too bad in overload
- need to account for conflicting priorities
 - eg, conversational services of low resilience users
 - eg, managed VoD download services
- difficult to reconcile using class-based differentiation
 - we would need to satisfy SLAs for a matrix of classifications
 - routers implement complex class-based schedulers that are in practice uncontrollable (mystification!)

Class-based differentiation and network neutrality

- differentiation is unfair and stifles innovation
 - eg, priority to managed services, favouring vertical integration

 - eg, deep packet inspection to discriminate against applications
- should we expect regulatory constraints?
 - network neutrality and the US congress
 - future European directives on neutrality
 - separation of infrastructure and service provision
- NB. neutrality might be an advantage for the operator
 - simpler operation in the absence of classes
 - meet user requirement for choice (e.g., priority to Skype)

An alternative to class-based: per flow QoS guarantees

- the principle of ATM (and Intserv, and IMS):
 - user declares the flow "profile"
 - · traffic characteristics and performance requirements
 - network performs admission control and allocates resources
 - network polices user traffic
- for individual flows or traffic aggregates (eg, for virtual networks)
- was this ever viable? is it viable for the future Internet?

QoS in IMS

Figure from Alcatel-Lucent white paper: Quality of Service for IMS on Fixed Networks

- but, how do we describe the traffic profile?
- how do we perform admission control?

Admission control for variable rate flows

- · traffic descriptors should be
 - understandable, meaningful, controllable
 - cf. ITU Rec I.371 (~1990)
- for practical reasons, only the latter requirement is satisfied
 - by the leaky/token bucket!
- · admission control is then either
 - too conservative, based on worst case traffic assumptions
 - or imprecise, based on empirical over booking factors
- the only satisfactory solutions are measurement based algorithms designed to maintain the transparent regime

Reservations and virtualization

- traffic isolation can be achieved by reserving constant rate pipes and implementing scheduling
- but is this satisfactory?
 - for private networks
 - or for service isolation
- seek rather an illusion of isolation based on intelligent, controlled statistical resource sharing via a new QoS paradigm!

Outline

- · Traffic and congestion
- · Myths and mystification
- · Managed or unmanaged Internet

An operator vision of the future Internet: IPX

- · IP interconnection "key benefits"
 - End To End QoS
 - Secure Network
 - Sustainable Commercial Model
 - Universal Interoperability
 - Highly Efficient and Scaleable

Participants in the IPX trial

An operator vision of the future Internet: IPX

- · IP interconnection "key benefits"
 - End To End QoS
 - Secure Network
 - Sustainable Commercial Model
 - Universal Interoperability
 - Highly Efficient and Scaleable

QoS in IPX

- six QoS classes distinguished by DiffServ codepoints
 - conversational, streaming, interactive 1/2/3, background
 - distinct values of delay, jitter, packet loss
- an SLA per class
 - performance is guaranteed and is integral to the business model
- "achieving the QoS specified for the service in the SLA is a matter for the IPX provider"

QoS in an <u>unmanaged</u> Internet

- the best efforts Internet works very well most of the time ("thanks to over provisioning")
 - the transparent regime ensures excellent quality for all
- and classical QoS models don't work
 - so much "myth and mystification"
 - driven by the fear of commoditization?
- · seek therefore to enhance the best efforts architecture
 - control sharing to prevent abuse and facilitate flow control
 - prevent congestion collapse in overload
- and allow end users to control sharing of last mile resource

Network controlled bandwidth sharing

- impose per-flow fair sharing in router queues
 - using fair queuing (or just fair dropping?)
- this realizes implicit differentiation
 - no loss for flows of rate < fair rate, i.e., all streaming flows
- fair queuing is scalable (cf. Kortebi, et al., 2005)
 - only O(10²) flows (with a packet in queue) need scheduling
- overload control is necessary (exceptionally)
 - flow admission control or selective load shedding (cf. electricity supply) to maintain the fair rate
- of course, users can disguise high rate flows! (cf. Briscoe, 2007)
 - but we only need to identify the very high rate flows
 - eg, fair share per destination

User control over last mile resources (DSL, wireless, fibre,...)

- in current networks, the operator dictates its own priorities, even upstream in the user's home gateway
 - e.g., priority to managed services that earn revenue!
- but only the user knows its own preferences
 - based on the application but also on the end user, time of day,...
- proposal: user signals priority for each flow, access node implements (same as for upstream traffic in gateway)
 - e.g., priority to Skype, priority to Dad,...

