

Kyung Hee
University

5.1 Introduction

\square Identifier of each device connected to the Internet: IP Address
\square IPv4 Address : 32 bits
*The address space of IPv4 is $\mathbf{2}^{32}$ or 4,294,967,296
\square The IPv4 addresses are unique and universal

* Two devices on the Internet can never have the same address at same time
\square Number in base 2, 16, and 256
*Refer to Appendix B

Binary Notation and Dotted-Decimal Notation

\square Binary notation
$01110101 \quad 1001010100011101 \quad 11101010$
32 bit address, or a 4 octet address or a 4-byte address
\square Decimal point notation

Notation (cont'd)

\square Hexadecimal Notation

01110101100101010001110111101010

0x75951DEA

- 8 hexadecimal digits
- Used in network programming

Example 5.1

\square Change the following IPv4 addresses from binary notation to dotted-decimal notation
a. 10000001000010110000101111101111
b. 11000001100000110001101111111111
c. 11100111110110111000101101101111
d. 11111001100110111111101100001111
\square Solution

- We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add dots for separation.
a. 129.11.11.239
b. 193.131.27.255
c. 231.219.139.111
d. 249.155.251.15

Example 5.4

\square Change the following IPv4 address in hexadecimal notation.
a. 10000001000010110000101111101111
b. 11000001100000110001101111111111
\square Solution

- We replace each group of 4 bits with its hexadecimal equivalent. Note that hexadecimal notation normally has no added spaces or dots; however, $0 x$ is added at the beginning of the subscript 16 at the end
a. 0X810B0BEF or 810B0BEF16
b. 0XC1831BFF or C1831BFF16

Example 5.5

\square Find the number of addresses in a range if the first address is 146.102.29.0 and last address is 146.102.32.225.
\square Solution
*We can subtract the first address from the last address in base 256(see Appendix B). The result is 0.0 .3 .255 in this base. To find the number of addresses in the range, we convert this number to base 10 and add 1 to the result

Number of addresses $=\left(0 \times 256^{3}+0 \times 256^{2}+3 \times 256^{1}+255 \times 256^{0}\right)+1=1024$

Operations

Need to apply some operations on 32-bit numbers in binary or dotted-decimal notation.

Bitwise NOT operation

Operations(con't)

Bitwise AND operation

AND		
Input 1 Input 2 Output 0 0 0 0 1 0 1 0 0 1 1 1 Operation for each bit .		

Operations(cont'd)

Bitwise OR operation

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	1

Operation for each bit

5.2 Classful Addressing

\square IP addresses, when started a few decades ago, used the concept of classes
\square In the mid-1990s, a new architecture, called classless addressing, was introduced
\square We will discuss classful addressing in this section, first. Classless addressing will be discussed in next section.

Occupation of the Address Space

Five classes

Class A: $2^{31}=2,147,483,648$ addresses, 50%
Class B: $2^{30}=1,073,741,824$ addresses, 25%
Class C: $2^{29}=536,870,912$ addresses, 12.5%
Class D: $2^{28}=268,435,456$ addresses, 6.25%
Class E: $2^{28}=268,435,456$ addresses, 6.25%

Kyung Hee University

Finding the Class of an Address

	Octet 1	Octet 2	Octet 3	Octet 4		Byte 1	Byte 2	Byte 3	Byte 4
Class A	$0 \ldots \ldots$.				Class A	0-127			
Class B	10.....				Class B	128-191			
Class C	110.				Class C	192-223			
Class D	1110....				Class D	224-299			
Class E	1111....				Class E	240-255			
Binary notation					Dotted-decimal notation				

Finding the Addresses Class Using Continuous Checking

Example 5.10

Find the class of each address:
a. 00000001000010110000101111101111
b. 11000001100000110001101111111111
c. 10100111110110111000101101101111
d. 11110011100110111111101100001111

Solution

See the procedure in Figure 5.7
a. The first bit is 0 . This is a class A address.
b. The first 2 bits are 1 ; the third bit is 0 . This is a class C address.
c. The first bit is 1 ; the second bit is 0 . This is a class B address.
d. The first 4 bits are 1s. This is a class E address.

Netid and hostid of A, B, and C Classes

\square netid and hostid are of varying lengths, depending on the class of the address

Class A

Hostid

Class C | Netid |
| :--- |

Class D \square
Class E \square

Blocks in Class A

\square Only 1 byte in class A defines the netid
\square The leftmost bit should be ' 0 '
\square Class A is divided into $\mathbf{2}^{7}=128$ blocks
\square Each block in class A contains 16,777,216 addresses

Blocks in Class B

$\square 2$ bytes in class B define the class
\square The two leftmost bits should be '10'
\square Class B is divided into $\mathbf{2 ~}^{14}=\mathbf{1 6 , 3 8 4}$ blocks
\square Each block in class B contains 65,536 addresses

Blocks in Class C

$\square 3$ bytes in class \mathbf{C} define the class
\square The three leftmost bits should be ' 110 '
\square Class C is divided into $\mathbf{2}^{21}=2,097,152$ blocks
\square Each block in class C contains 256 addresses

Class C	Netid 192.0.0	Netid 192.0.1		Netid 223.255.255
	192.0.0.0	192.0.0.1		223.255.255.0
	-••	- .	$\bullet \bullet 0$	-••
	192.0.0.255	192.0.1.255		223.255.255.255
	2,097,152 blocks: 256 addresses in each block			

The Single Block in Class D and E

\square Class D

*Class D is designed for multicasting
*Used to define one group of hosts on the Internet

\square Class E
*Reserved for future purposes

Two-Level Addressing

> Class A: $n=8$
> Class B: $n=16$
> Class C: $n=24$

Information Extraction in Classful Addressing

\square The number of addresses
\square The first address
\square The last address

Example 5.13

An address in a block is given as 73.22.17.25. Find the number of addresses in the block, the first address, and the last address

Solution

1. The number of addresses in this block is
$\mathrm{N}=\mathbf{2}^{32-\mathrm{n}}=\mathbf{2}^{24}=\mathbf{1 6 , 7 7 7 , 2 1 6}$
2. To find the first address, we keep the left most 8 bits and set the rightmost 24 bits all to 0 s . The first address is 73.0.0.0/8 in which 8 is the value of n.
3. To find the last address, we keep the leftmost 8 bits and set the rightmost 24 bits all to 1s. The last address is 73.255.255.255

Solution of Example 5.13

Netid 73: common in all addresses

Sample Internet

Kyung Hee
University

Network Address

\square The first address of block is network address
\square Used in routing a packet to its destination network
\square The network address is the identifier of a network

Network Address

Network Mask

\square Used to extract the network address from the destination address of a packet
\square Called a default mask

Finding a Network Address using the Default Mask

Example 5.16

A router receives a packet with the destination address 201.24.67.32. Show how the router finds the network address of the packet.

Solution

Since the class of the address is B, we assume that the router applies the default mask for class $B, 255.255 .0 .0$ to find the network address.

Destination address ->	201	.	24	.	67	.	32	
Default mask	$->$	255	.	255	.	0	.	0
Network address	$->$	201	.	24	.	0	.	0

Three-Level Addressing : Subnetting

\square The organization that was granted a block in class A or B needed to divide its large network into several subnetworks for better security and management
\square In subnetting, a network is divided into several smaller subnetworks with each subnetwork having its own subnetwork address

Example 5.18

The next figure shows a network using class B addresses before subnetting. We have just one network with almost 216 hosts. The whole network is connected, through one single connection, to one of the routers in the Internet. Note that we have shown I16 to show the length of the netid (class B)

Example 5.19

\square The next figure shows same network in example 5.18 after subnetting.

Kyung Hee

Network Mask and Subnet Mask

Kyung Hee
University

Supernetting

\square Combine several class C blocks to create a larger range of address

- An organization that needs 1000 addresses can be granted four class C blocks.
\square Supernet mask is the reverse of a subnet mask

Comparison of Subnet, Default, and Supernet masks

Combine 8 class C blocks into 1 superblock

5.3 Classless Addressing

\square Classful address did not solve the address depletion problem

Distribution of addresses and the routing process more difficult
\square With the growth of the Internet, a larger address space was needed as a long-term solution
\square Although the long-range solution has already been devised and is called IPv6, a short-term solution was also devised to use the same address space but to change the distribution of addresses

* Classless addressing

Variable-length blocks in Classless Addressing

\square In classless addressing, whole address space id divided into variable length blocks
*Theoretically, we can have a block of $\mathbf{2}^{\mathbf{0}}, \mathbf{2}^{\mathbf{1}}, \mathbf{2}^{\mathbf{2}}, \ldots \mathbf{2}^{\mathbf{3 2}}$ addresses

Prefix and Suffix

\square Prefix : play the same role as the netid
\square Suffix : play the same role as the hostid

\square The prefix length in classless addressing can be 1 to 32

Example 5.22

What is the prefix length and suffix length if the whole Internet is considered as one single block with 4,294,967,296 addresses?

Solution

In this case, the prefix length is 0 and suffix length is 32. All 32 bits vary to define $2^{32}=4,294,967,296$ hosts in this single block

Slash Notation

\square Notation of address including length of prefix

\square In classless addressing, we need to know one of the addresses in the block and the prefix length to define the block

Example 5.25

\square In classless addressing, an address cannot per se define the block the address belongs to. For example, the address 230.8.24.56 can belong to many blocks some of them are shown below with the value of the prefix associated with that block :

| Prefix length:16 | \rightarrow | Block: | 230.8 .0 .0 | to | 230.8 .255 .255 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prefix length:20 | \rightarrow | Block: | 230.8 .16 .0 | to | 230.8 .31 .255 |
| Prefix length:26 | \rightarrow | Block: | 230.8 .24 .0 | to | 230.8 .24 .63 |
| Prefix length:27 | \rightarrow | Block: | 230.8 .24 .32 | to | 230.8 .24 .63 |
| Prefix length:29 | \rightarrow | Block: | 230.8 .24 .56 | to | 230.8 .24 .63 |
| Prefix length:31 | \rightarrow | Block: | 230.8 .24 .56 | to | 230.8 .24 .57 |

Example 5.27

One of the address in a block is 167.199.170.82/27. To find the number of addresses in the network, the first address, and the last address.

Solution

The value of \boldsymbol{n} is 27 . The network mask has twenty-seven $1 s$ and five Os. It is 255.255.255.240.
a. The number of addresses in the network is $\mathbf{2}^{\mathbf{3 2 - n}}=\mathbf{2 5}^{\mathbf{5}} \mathbf{= 3 2}$
b. We use the AND operation to find the first address. The first address is 167.199.170.64/27

Address in Binary	10100111	11000111	10101010	01010010
Network mask	11111111	11111111	11111111	11100000
First address	10100111	11000111	10101010	01000000
Kyung Hee University				43

Example 5.27(cont’d)

C. To find the last address, we first find the complement of the network mask and the OR it with the given address : the last address is 167.199.170.95/27

| Address in Binary | 10100111 | 11000111 | 10101010 | 01010010 |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Network mask | 0000000 | 00000000 | 00000000 | 00011111 |
| Last address | 10100111 | 11000111 | 10101010 | 01011111 |

Extracting Block Information

\square The number of addresses in the block can be found as

$$
N=2^{32-n}
$$

\square The first address in the block can be found by ANDing the address with the network mask

First address = (any address) AND (network mask)
\square The last address in the block can be found by either adding the first address with the number of addresses or, directly, by ORing the address with complement (NOTing) of the network mask

Last address = (any address) OR [NOT (network mask)]

Block Allocation

\square The ultimate responsibility of block allocation is given to a global authority called ICANN(Internet Corporation for Assigned Names and Address)
\square Assign a large block of addresses to an ISP (Internet Service Provider)
\square For the proper operation of the CIDR, there are three restrictions
*The number of requested addresses, N, needs to be power of 2.
*The value of prefix length can be found from the number of addresses in the block

* The requested block needs to be allocated where there are a contiguous number of unallocated addresses in the address space

Example 5.30

An ISP has requested a block of 1000 addresses. The following block is granted.
a. Since $\mathbf{1 0 0 0}$ is not a power of $\mathbf{2 , 1 0 2 4}$ addresses are granted
b. The prefix length for the block is calculated as $\boldsymbol{n}=32$ $\log _{2} \mathbf{1 0 2 4} \mathbf{= 2 2}$
c. The beginning address is chosen as 18.14.12.0

The granted block is 18.14.12.0/22. The first address is 18.14.12.0/22 and the last address is 18.14.15.255/22

5.4 Special Addresses

\square In classful addressing some addresses were reserved for special purposes. The classless addressing scheme inherits some of these special addresses from classful addressing
\square Special block

- All-Zero Address
* All-One Address
- Loopback Address
* Private Address
- Multicast Address
\square Special address in each block
* Network Address
- Direct broadcast address

Example of using the all-zeros address

\square When a host needs to send an IPv4 packet but it does not know its own address

Example of Limited Broadcast Address

All-One Address

\square A host that wants to send a message to every other host can use

Kyung Hee
University

Example of Loopback Address

\square Used to test the software on a machine

Private address

\square Not recognize globally
\square Used either in isolation or in connection with network address translation technique

Block	Number of addresses	Block	Number of address
$10.0 .0 .0 / 8$	$16,777,216$	$192.168 .0 .0 / 16$	65,536
$172.16 .0 .0 / 12$	$1,047,584$	$169.254 .0 .0 / 16$	65,536

Example of Directed Broadcast Address

Network: 221.45.71.0/24

5.5 NAT

\square The distribution of addresses through ISPs has created a new problem

* ISP cannot rearrange the range of addresses
\square But in most situation, only a portion of computers in a small network need access to the Internet simultaneously
* The number of allocated addresses does not have to match the number of computers in the network
\square A technology that can provide the mapping between the private and universal addresses, and at the same time, support virtual private networks is NAT(Network Address Translation)

Example of NAT and Address Translation

Site using private addresses

Kyung Hee
University

Using One IP Address

Kyung Hee University

Example of NAT

\square Using a pool of IP address

*Using one global address by the NAT router allows only one private-network host to access the same external host
\square To remove this restriction, NAT router can use a pool of global addresses
\square Using both IP addresses and port addresses

- To allow a many-to-many relationship

Private Address	Private Port	External Address	External Port	Transport Protocol
172.18.3.1	1400	25.8.3.2	80	TCP
172.18.3.2	1401	25.8.3.2	80	TCP
...	...	\ldots	\ldots	...
Kyung Hee University				57

Summary

\square The identifier used in the IP layer of the TCPIIP layer of the TCPIIP protocol suite is called the Internet address or IP address. An IPv4 address is $\mathbf{3 2}$ bits long. An address space is the total number of addresses used by the protocol. The address space of IPv4 is $\mathbf{2}^{32}$ or 4,294,967,296.
\square In classful addressing, the IPv4 address space is divided into five classes: A, B, C, D, and E. An organization is granted a block in one of the three classes, A, B, or C. Classes D and E is reserved for special purpose. An IP address in classes A, B, and C is divided into netid and hostid.
\square In classful addressing, the first address in the block is called the network address. It defines the network to which an address belongs. The network address is used in routing a packet to its destination network.
\square A network mask or a default mask in classful addressing is a 32-bit number with \mathbf{n} leftmost bits all set to 1 s and $(32-\mathrm{n})$ rightmost bits all set to 0 s . It is used by a router to find the network address from the destination address of a packet.
\square The idea of splitting a network into smaller subnetworks is called subnetting. A subnetwork mask, like a network mask, is used to find the subnetwork address when a destination IP address is given. In supernetting, an organization can combine several class C blocks to create a larger range of addresses.

Kyung Hee
University

Summary

\square In 1996, the Internet authorities announced a new architecture called classless addressing, or CIDR that allows an organization to have a block addresses of any size as long as the size of the block is a power of two.
\square The address in classless addressing is also divided into two parts: the prefix and the suffix. The prefix plays the same role as the netid; the suffix plays the same role as the hostid. All addresses in the block have the same prefix; each address has a different suffix
\square Some of the blocks in IPv4 are reserved for special purpose. In addition, some addresses in a block are traditionally used for special addresses. These addresses are not assigned to any host.
\square To improve the distribution of addresses, NAT technology has been created to allow separation of private addresses in a network from the global addresses used in the Internet. A translation table can translate the private addresses, selected from the blocks allocated for this purpose, to global addresses. The translation table also translates the IP addresses as well as the port number for mapping from the private to global addresses and vice versa.

Kyung Hee
University

Q and A

