
Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 1 -

Deciphering TinyOS Serial Packets
Octave Tech Brief #5-01

Jeff Thorn, Director of Product Development
March 10, 2005

Introduction
One of the first things a developer wants to do once they get their new mote kit up and
running is figure out how to use it with their own applications. There is ample
documentation on the TinyOS website about programming the motes, but figuring out
how to get that data to your back end applications and what it means can be rather
difficult. This document serves as a beginners guide to deciphering TinyOS serial
packets. It assumes the reader has been successful in reading the raw data packet from
their mote base station (though their serial port connected to a MIB510 Serial Interface
board with a mic2 node 0, for example). It begins with some general information about
the raw data packet. It then discusses the detailed packet information for a TinyOS
message and its payload data. Sample code that shows conversion to engineering units is
provided in the Appendix.

The equipment used in the preparation of this document was a Crossbow MICA2 mote
kit preinstalled with the Surge / Surge_Reliable TinyOS application. The development
environment used in testing was C# .NET, but the information herein is primarily
platform independent. The detail within this Tech Brief is the result of extensive review
of source code, particularly the Surge-View java application and xlisten C application.
Wherever possible, references to source code files are made. In addition, the TinyOS user
community and Crossbow engineering and technical support have been, and continue to
be, a valuable resource.

General Information
Some high level points that are critical to understanding the makeup of the serial data
packet are listed below.

• A TinyOS data packet has a maximum length of 255 bytes.
• The raw data packet is wrapped on both ends by a frame synchronization byte of

0x7E. This is used to detect the start and end of a packet from the stream.
• The raw data packet uses an escape byte of 0x7D. This is needed in case a byte of

payload data is the same as a reserved byte code, such as the frame synch byte
0x7E. In such a case, the payload data will be preceded by the escape byte and
the payload data itself will be exclusively OR’ed with 0x20. For example, a
payload data byte of 0x7E would appear in the data packet as 0x7D 0x5E.

• On an XP machine, multiple byte values are byte-swapped in the data stream. For
example, the 2 byte UART Address field (0x007E) will appear as 7E 00 in the
byte stream. (Note: the .NET BitConverter.ToUInt16() handles this
conversion correctly).

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 2 -

Raw Data Packet
The following diagram and table describes the raw data packet
(see \tools\java\net\tinyos\packet\Packetizer.java):

SYNC_BYTE Packet
Type

Payload Data SYNC_BYTE

0 1 2...n-1 n

Byte # Field Description
0 Packet frame synch

byte
Always 0x7E

1 Packet Type There are 5 known packet types:
• P_PACKET_NO_ACK (0x42) - User packet

with no ACK required.
• P_PACKET_ACK (0x41) – User packet. ACK

required. Includes a prefix byte. Receiver must
send a P_ACK response with prefix byte as
contents.

• P_ACK (0x40) – The ACK response to a
P_PACKET_ACK packet. Includes the prefix
byte as its contents.

• P_UNKNOWN (0xFF) – An unknown packet
type.

2…n-1 Payload Data In most cases will be a TinyOS Message of varying
length, which is described below.

n SYNC_BYTE Always 0x7E

TinyOS Message
The payload data will typically be a type of TinyOS message, as defined by the struct
TOS_Msg in the file \tos\types\AM.h. This data structure is defined as follows:

typedef struct TOS_Msg
{
 /* The following fields are transmitted/received on the radio. */
 uint16_t addr;
 uint8_t type;
 uint8_t group;
 uint8_t length;
 int8_t data[TOSH_DATA_LENGTH];
 uint16_t crc;

 /* The following fields are not actually transmitted or received
 * on the radio! They are used for internal accounting only.
 * The reason they are in this structure is that the AM interface
 * requires them to be part of the TOS_Msg that is passed to
 * send/receive operations.
 */
 uint16_t strength;
 uint8_t ack;
 uint16_t time;
 uint8_t sendSecurityMode;
 uint8_t receiveSecurityMode;
} TOS_Msg;

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 3 -

The TOS_Msg data packet is described in the following diagram and table:

Address Message
Type

Group
ID

Data
Length

Data CRC

0 1 2 3 4 5...n-2 n-1 n

Byte # Field Description
0 - 1 Message Address One of 3 possible value types:

• Broadcast Address (0xFFFF) – message to all
nodes.

• UART Address (0x007e)– message from a
node to the gateway serial port. All incoming
messages will have this address.

• Node Address – the unique ID of a node to
receive message.

2 Message Type Active Message (AM) unique identifier for the type of
message it is. Typically each application will have its
own message type. Examples include:

• AMTYPE_XUART = 0x00
• AMTYPE_MHOP_DEBUG = 0x03
• AMTYPE_SURGE_MSG = 0x11
• AMTYPE_XSENSOR = 0x32
• AMTYPE_XMULTIHOP = 0x33
• AMTYPE_MHOP_MSG = 0xFA

3 Group ID Unique identified for the group of motes participating in
the network. The default value is 125 (0x7d). Only
motes with the same group id will talk to each other.

4 Data Length The length (l) in bytes of the data payload. This does not
include the CRC or frame synch bytes.

5…n-2 Payload data The actual message content. The data resides at byte 5
through byte 5 plus the length of the data (l from above).
The data will be specific to the message type. Specific
message types are discussed in the next section.

n-1, n CRC Two byte code that ensures the integrity of the message.
The CRC includes the Packet Type plus the entire
unescaped TinyOS message. A discussion on how the
CRC is computed is included in the Appendix.

Multihop Message
The payload data inside a TinyOS message is raw data specific to an application
embedded with the mote device. In many cases, particularly applications that utilize ad-
hoc mesh networking, the application will utilize the Multihop message protocol. The
definition of the Multihop message is shown below. The format of the Multihop message
is shown in the following diagram and table.

/* From /contrib/xbow/toslib/ReliableRoute/MultiHop.h – (one of a few implementations) */
typedef struct MultihopMsg {
 uint16_t sourceaddr;
 uint16_t originaddr;
 int16_t seqno;
 uint8_t hopcount;
 uint8_t data[(TOSH_DATA_LENGTH - 7)];
}

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 4 -

Source Address Origin Address Sequence Number Hop
Count

Application
Data

0 1 2 3 4 5 6 7...n

Byte # Field Description
0,1 Source Address The address of the forwarding node.
2,3 Origin Address The address of the node that originated the packet.
4,5 Sequence Number Used for determining route and calculating missed

packets
6 Hop Count Used for calculating route. Number of nodes traversed.
7…n Application Data The specific application data. Such as SurgeMsg (see

below).

Surge Message
The Application Data inside a Multihop message is raw data specific to an actual end
user application. The format of the data is determined by the Message Type field in byte
2 of the TinyOS message. The application that comes pre-installed on the motes from
Crossbow is called Surge_Reliable, which has a message type of
AMTYPE_SURGE_MSG (0x11). The data format for the Surge_Reliable application is
defined in the SurgeMsg struct declared in the Surge.h header file. The format of that
message is given below.

/* From Surge.h in contrib/xbow/apps/Surge_Reliable */
typedef struct SurgeMsg {
 uint8_t type;
 uint16_t reading;
 uint16_t parentaddr;
 uint32_t seq_no;
 uint8_t light;
 uint8_t temp;
 uint8_t magx;
 uint8_t magy;
 uint8_t accelx;
 uint8_t accely;
}

The SurgeMsg fields are described in the following diagram and table. See the appendix
for information on converting to engineering units.

Type Reading Parent

Addr
Sequence Number Light Temp Mag

X
Mag
Y

Accel
X

Accel
Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Byte # Field Description
0 Type The type of message that indicates the action. Known values

are:
• SURGE_TYPE_SENSORREADING (0x00) – The

message contains sensor data.
• SURGE_TYPE_ROOTBEACON (0x01) -
• SURGE_TYPE_SETRATE (0x02) – Changes the

rate a mote will send data.
• SURGE_TYPE_SLEEP (0x03) – Puts the mote to

sleep.

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 5 -

• SURGE_TYPE_WAKEUP (0x04) – Wakes mote.
• SURGE_TYPE_FOCUS (0x05) – Causes mote to

chirp.
• SURGE_TYPE_UNFOCUS (0x06) – Returns mote

to normal (unfocused mode).
1-2 Reading Does not appear to be used.
3-4 Parent Address The address of the Parent Node.
5-8 Sequence

Number
The upper 9 bits represent the battery voltage. The remaining
bits count the number of packets sent since the application
was last reset.

9 Light The raw light sensor reading.
10 Temp The raw thermistor reading.
11 Mag X The raw sensor reading for the x-axis magnetometer.
12 Mag Y The raw sensor reading for the y-axis magnetometer.
13 Accel X The raw sensor reading for the x-axis accelerometer.
14 Accel Y The raw sensor reading for the x-axis accelerometer.

Sample Data Packet
Tying it all together, a sample Surge data packet is deconstructed below.

Raw Data Packet:
7E 42 7D 5E 00 11 7D 5D 16 00 00 02 00 9D 00 00 00 00 00 00 00 6F 00 80 DB F9 7D 5E FF FF
01 C8 EC D9 7E

The raw data packet from the serial port is shown above. Below is the TOS Message after
stripping the frame sync bytes and un-escaping the data.

TOS Message:
7E 00 11 7D 16 00 00 02 00 9D 00 00 00 00 00 00 00 6F 00 80 DB F9 7E FF FF 01 C8 EC D9

The table below shows the meaning of this byte sequence.

Bytes Description
7E 00 The UART Serial address – 126 (0x00 7E)
11 The message type. Surge message – 17 (0x11)
7D Group ID. Crossbow mote default is 125 (0x7D)
16 Data length – 22 (0x16)
00 00 The address of the last forwarding node. (node 0)
02 00 The origin address. (node 2)
9D 00 The sequence number – 157 (0x00 9D)
00 The hop count
00 Surge message type (00 – sensor reading)
00 00 Reading – not used
00 00 Parent Node address
6F 00 80 DB Battery voltage (<< 9 bits), surge sequence no (>>23 bits)
F9 Raw light value
7E Raw temp value
FF Raw mag x value
FF Raw mag y value
01 Raw accel x value
C8 Raw accel y value
EC D9 CRC

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 6 -

Additional Resources
Be sure to visit the Octave Technology website (www.octavetech.com) regularly to check
for new Tech Briefs. The list below contains additional links for more information on
TinyOS and wireless sensor networks.

• TinyOS Website – http://www.tinyos.net
• TinyOS User Group - http://www.tinyos.net/support.html#lists
• TinyOS Documentation - http://www.tinyos.net/tinyos-1.x/doc/
• TinyOS Sourceforge Project - http://sourceforge.net/projects/tinyos/
• Crossbow Website - http://www.xbow.com/
• Crossbow FAQ -

http://xbow.custhelp.com/cgi-bin/xbow.cfg/php/enduser/std_alp.php
• Crossbow MPR/MIB User Manual -

http://www.xbow.com/Support/Support_pdf_files/MPR-
MIB_Series_User_Manual_7430-0021-06_A.pdf

About Octave Technology
Octave Technology develops innovative software solutions utilizing wireless sensor
networks and Auto-ID technologies. Octave specializes in bringing emerging
technologies to market by putting new products in the hands of the people who will
benefit from them most – the end user. Using sensor and Auto-ID technologies, Octave
streamlines inefficient manual and paper-based business processes. Through the research,
development and deployment of enterprise software and middleware solutions that extend
important data beyond the desktop, Octave Technology allows virtually any industry or
organization - maintenance, manufacturing, supply chain, consumer products - to quickly
deploy and benefit from the integration of Auto-ID technologies.

Octave Technology is available for consultation regarding wireless sensor network and
Auto ID technology pilot programs. For more information, contact info@octavetech.com.

For comments related to this document please contact Octave Technology’s Director of
Product Development, Jeff Thorn (jthorn@octavetech.com).

Appendix
Sample code for converting raw sensor values to engineering units is shown below. The
code is primary C#, but can easily be applied to Java or straight C/C++. Additional
resources for finding more calculations are:

• Xlisten: /xlisten/xconvert.c
• Xlisten: /amtypes/surge.c (Available in version 1.16 or higher. Note that version

1.13 is shipped w/ XBow mote kits).

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 7 -

Calculating CRC
The following code is used to compute the CRC of a data packet:

public static int calcByte(int crc, int b)
{
 crc = crc ^ (int)b << 8;

 for (int i = 0; i < 8; i++)
 {
 if ((crc & 0x8000) == 0x8000)
 crc = crc << 1 ^ 0x1021;
 else
 crc = crc << 1;
 }

 return crc & 0xffff;
}

public static int calc(byte[] packet, int index, int count)
{
 int crc = 0;
 int i;

 while (count > 0)
 {
 crc = calcByte(crc, packet[index++]);
 count--;
 }

 return crc;
}

Calculating Battery Voltage in Engineering Units
/// <summary>
/// Calculates the voltage. First the Vref value must be
/// computed using the upper 9 bits of the _surgeSeqno
/// field. The voltage is calculated using the following
/// formula (courtesy of Martin Turon & Crossbow):
///
/// BV = RV*ADC_FS/data
/// where:
/// BV = Battery Voltage
/// ADC_FS = 1023
/// RV = Voltage Reference for mica2 (1.223 volts)
/// data = data from the adc measurement of channel 1
/// BV (volts) = 1252.352/data
/// BV (mv) = 1252352/data
///
/// See also: /xlisten/xconvert.c line: 52
///
/// The value for _surgeSeqno is bytes 5-8 from the SurgeMsg.
///
/// </summary>
/// <returns>The voltage of the battery in millivolts as a float.</returns>
float CalculateVoltage()
{
 float vref = (_surgeSeqno & 0xFF800000) >> 23;

 return 1252352 / vref;
}

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 8 -

Calculating Temperature in Engineering Units
/// <summary>
/// Calculates the temperature, in degrees Celsius of the:
///
/// Panasonic ERT-J1VR103J Thermistor
///
/// The formula in the MTS Series User Manual is:
/// 1/T(K) = a + b × ln(Rthr) + c × [ln(Rthr)]^3
///
/// where:
/// Rthr = R1(ADC_FS-ADC)/ADC
/// a = 0.00130705
/// b = 0.000214381
/// c = 0.000000093
/// R1 = 10 kOhm
/// ADC_FS = 1023
/// ADC = output value from mote’s ADC measurement.
///
/// Note that an adjusted temp (adjTemp) is used because the
/// actual temp reading is a 10 bit value that has been compressed
/// into a single byte. As such it must be shifted left 2 bit places.
///
/// The value for _temp is the raw sensor reading from the SurgeMsg.
///
/// </summary>
/// <returns>Temperature in Degrees Celsius as a float.</returns>
float CalculateTempC()
{
 int adjTemp = _temp << 2;

 // prevent divide by zero.
 if(adjTemp == 0)
 return 0F;

 float temperature, a, b, c, Rthr;
 a = 0.001307050F;
 b = 0.000214381F;
 c = 0.000000093F;
 Rthr = 10000 * (1023 - adjTemp) / adjTemp;

 temperature = 1 / (float)(a + b * Math.Log(Rthr) + c *
 Math.Pow(Math.Log(Rthr),3));
 temperature -= 273.15F; // Convert from Kelvin to Celcius

 return temperature;
}

/// <summary>
/// Uses normal Celsius to Fahrenheit conversion formula:
///
/// Fahrenheit = Celsius * 9/5 + 32
///
/// </summary>
/// <returns>Temperature in degree F as a float.</returns>
float CalculateTempF()
{
 return (CalculateTempC() * 9 / 5) + 32;
}

Octave Tech Brief #5-01
Deciphering TinyOS Serial Packets

 - 9 -

Calculating Light in Engineering Units
/// <summary>
/// Calculates the light value for the:
///
/// Clairex CL94L light sensor
///
/// Performs simple ADC conversion with the light value
/// as the reference.
///
/// See also:
/// /xlisten/amtypes/surge.c line: 54
/// /xlisten/xconvert.c line: 163
/// </summary>
/// <returns>Voltage of ADC channel as an unsigned integer in mV</returns>
UInt16 CalculateLight()
{
 return (UInt16)(CalculateVoltage() * _light / 1024);
}

