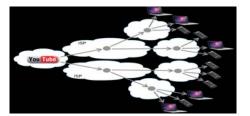
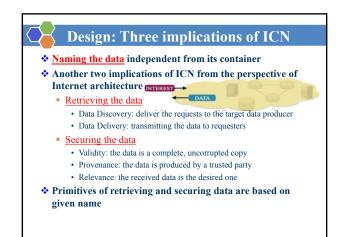


Data Distribution Context


* Basic Observation in current era:

• End users essentially concerns about the data as long as it is genuine; instead of where the data residents, how the data is reached, or from which path the data is transferred

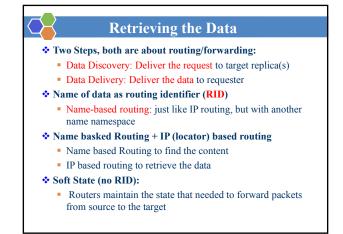
Information-centric Networking


ICN, which names the data directly, breaks through the restrictions of end-to-end IP semantics

- Multiple copies: authoritative sources or delegation
- Multiple path & multicast & broadcast on broadcast channel
- Identical request aggregation

How to Design an ICN Architecture ?

Retrieve and secure the data via name-based primitives


Naming the Data

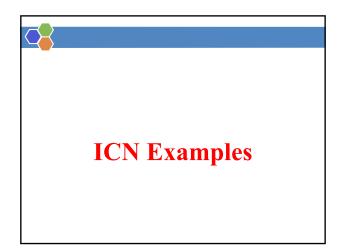
* Hierarchical/Human-readable (HR) name

- Introduce the binding between the desired data (entity in human mind) and its ICN name (entity in cyberspace)
- e.g., www.google.com/news/xxx

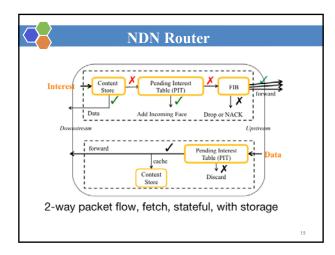
* Self-certifying (SC) name

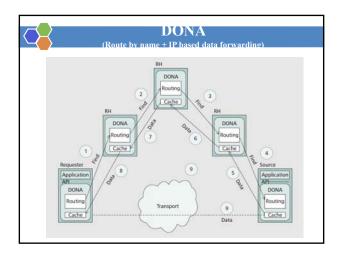
- Hashing is the simplest form, and general form contain public key digest of producer
- Introduce the bing between the name and the data (both are cyberspace entities)
- e.g., 23azdad:alda23ad

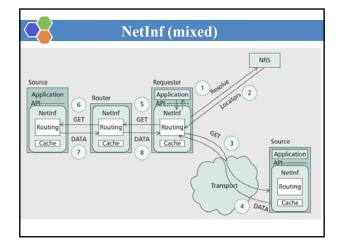
Securing the Data


* Goals: Validity, Provenance, Relevance

- * Three Steps to verify Validity, Provenance and Relevance
 - 1. Verifying content-name mapping is signed by a particular key
 - 2. Determining something about who that key belongs to whom, in our term, the producer
 - 3. Deciding whether or not that is an acceptable producer for this particular data
- Availability: defend DoS led by caching poisoning:
 - Caching Poisoning: data is faked and distributed among the network


Summary of ICN Proposals


Feature	DONA	NDN	PURSUIT	SAIL
NDO Naming	self-certifying	human-readable	self-certifying	human-readable or self- certifying
Routing Identifier	attachment point	name	path label	attachment point
Data Discovery	name-based routing by infrastructure	name-based routing	name-based routing by infrastructure	name-based routing / (name resolution & locator-based routing)
Data Delivery	locator-based routing / hop-by-hop state	hop-by-hop state	path addressing	locator-based routing / hop-by-hop state


Different proposals advocate different design, Only a few consensuses

NDN				
Where -> Wh internetworki		Data Networking	(NDN) Interest packet	
		ç	S Content Name	
mail WWW phone		browser chat	Selector	
SMTP HTTP RTP		File Stream	Nonce	
TCP UDP	Individual apps Every node Individual linka	Security Content chursts	Data packet	
SMA async sonet		Strategy IP UDP P2P BCast	Content Name	
opper fiber radio		copper fiber radio	Signature (idigest algorithm, witness,)	
			Signed Info (publisher ID, key locator, stale time,)	
			1	

Debate: SC v.s. HR Naming

- SC name
 - relies on prior provenance and relevance in the first place
 - Hard to be aggregated scalability problem
- * HR name provide weak intrinsic relevance
 - By adding self-certifying component, public key or its pointer which sign the NDO, to provide availability
 - Easy to be aggrated

Debate: Caching

- S. Shenker et al [sigcomm'13] argue that edge-based caching is enough for ICN based on a dataset from Akamai, where requests follow zipf distribution
- C. Imbrenda et al [ICN'14] conclude very different conclusion based on the dataset from access and back-haul Orange S.A., wherein requests follows combination of Weibull (head&tail) and zipf (middle)

Edge or In-network ?

Thus, request distribution is the key factor for caching storage placement – We don't know the real ICN traffic distribution yet!

Conclusions Concl

- ***** ICN is still on-going research.
 - There are not too many consensuses on the designing of ICN, even for those fundamental design

* Reference

Xiaoke Jiang, Jun Bi, et. al., A Survey on Information-Centric Networking: Concept, Design and Debate, China Communications (IEEE), Vol.12, No.7, 2015