Chapter 2-1 Conventional **Encryption Message** Confidentiality

Outline

- Conventional Encryption Principles
- Conventional Encryption Algorithms
- Cipher Block Modes of Operation
- Location of Encryption Devices
- Key Distribution

Conventional Encryption Principles

- An encryption scheme has five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret Key
 - Ciphertext
 - Decryption algorithm
- Security depends on the secrecy of the key, not the secrecy of the algorithm

Conventional Encryption Principles

Figure 2.1 Simplified Model of Conventional Encryption

Symmetric Encryption

- or conventional / secret-key / single-key
- sender and recipient share a common key
- was the only type of cryptography, prior to invention of public-key in 1970's

Basic Terminology

- **plaintext** the original message
- **ciphertext** the coded message
- **cipher** algorithm for transforming plaintext to ciphertext
- **key** information used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- **decipher (decrypt)** recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- **cryptanalysis** (**codebreaking**) the study of principles/ methods of deciphering ciphertext *without* knowing key
- **cryptology** the field of both cryptography and cryptanalysis

Symmetric Cipher Model

Requirements

- Two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
 - $Y = \mathcal{E}_{K}(X)$
 - $X = \mathsf{D}_{K}(Y)$
- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- can be characterized by:
 - The type of operations used for transforming plaintext to ciphertext
 - substitution / transposition / product
 - The number of keys used
 - symmetric (single key)
 - asymmetric (two-keys, or public-key encryption)
 - way in which plaintext is processed
 - block / stream

Types of Cryptanalytic Attacks • ciphertext only

- only known algorithm / ciphertext, statistically, can identify plaintext
- known plaintext
 - known algorithm/ plaintext & ciphertext pairs to attack cipher
- chosen plaintext
 - known algorithm/ ciphertext to be decoded/chosen plaintext/its corresponding ciphertext
- chosen ciphertext
 - known algorithm / purported ciphertext chosen/its corresponding decrypted plaintext
- chosen text

- chosen plaintext + Purported ciphertext chosen + corresponding decrypted plaintext by generated by secret key

Average time required for exhaustive key search (brute force approach)

Key Size (bits)	Number of Alternative Keys	Time required at 1 encription/us	Time required at 10 ⁶ Decryption/µs
32	$2^{32} = 4.3 \times 10^9$	2^{31} us = 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \text{ x } 10^{16}$	2^{55} us = 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2^{127} us = 5.4 x 10 ²⁴ years	5.4 x 10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2^{167} us = 5.9 x 10 ³⁶ years	5.9 x 10 ³⁰ years
26 characters	$26! = 4 \times 10^{26}$	$2 \ge 10^{26} = 6.4 \ge 10^{12}$ years	6.4×10^6 years

More Definitions

unconditional security

 no matter how much computer power is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

computational security

 given limited computing resources (e.g., time needed for calculations is greater than age of universe), the cipher cannot be broken

Computationally Secure

• The cost of breaking the cipher exceeds the value of the encrypted information

• The time required to break the cipher exceeds the useful lifetime of the information

Types of Ciphers

- *Substitution(□H \overline{\uverline{\uverline{\uverline{\overline{\uver*
- Permutation (or transposition: ス/ 茎) ciphers
- Product ciphers (or product system : 생성시스템)

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher by Julius Caesar (?)
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

• What's the key?

Caesar Cipher

• can define transformation as:

a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

- mathematically give each letter a number
 a b c d e f g h i j k l m
 0 1 2 3 4 5 6 7 8 9 10 11 12
 n o p q r s t u v w x y Z
 13 14 15 16 17 18 19 20 21 22 23 24 25
- then have Caesar cipher (using modular arithmetic) as:

$$C = E(p) = (p + k) \mod (26)$$

 $p = D(C) = (C - k) \mod (26)$

Decryption shift	Candidate plaintext	
0	exxegoexsrgi	
1	dwwdfndwrqfh	
2	cvvcemcvqpeg	
3	buubdlbupodf	
4	attackatonce	
5	zsszbjzsnmbd	
6	yrryaiyrmlac	
23	haahjrhavujl	
24	gzzgiągzutik	
25	fyyfhpfytshj	

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
 A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- e.g., break ciphertext "GCUA VQ DTGCM"

Polyalphabetic Ciphers

- another approach to improving security is to use multiple cipher alphabets
- called polyalphabetic substitution ciphers
- makes cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher is the **Vigenère Cipher**
- effectively multiple caesar ciphers
- key is multiple letters long K = k1 k2 ... kd
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Example

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword deceptive key: deceptivedeceptivedeceptive plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time Pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for **any plaintext** & **any ciphertext** there exists a key mapping one to other
- can only use the key **once** though
- have problem of safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as: mematrhtgpry etefeteoaat
- giving ciphertext MEMATRHTGPRYETEFETEOAAT

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Steganography

- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- has drawbacks

– high overhead to hide relatively few info bits

Summary

- have considered:
 - classical cipher techniques and terminology
 - cryptanalysis using letter frequencies
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers and rotor machines
 - stenography