
1

Chapter3
Public-Key Cryptography

and Message
Authentication

2

OUTLINE

• Approaches to Message Authentication

• Secure Hash Functions and HMAC

• Public-Key Cryptography Principles

• Public-Key Cryptography Algorithms

• Digital Signatures

• Key Management

3

Authentication

• Requirements - must be able to verify that:

1. Message came from apparent source

or author,

2. Contents have not been altered,

3. Sometimes, it was sent at a certain

time or sequence.

• Protection against active attack (falsification

of data and transactions)

4

Approaches to Message
Authentication

• Authentication Using Conventional Encryption
– Only the sender and receiver should share a key

• Message Authentication without Message
Encryption
– An authentication tag is generated and appended

to each message

• Message Authentication Code
– Calculate the MAC as a function of the message

and the key. MAC = F(K, M)

5

6

One-way HASH function

7

One-way HASH function
• Secret value is added before the hash

and removed before transmission.

– Variation of this technique is HMAC

s s

8

Secure HASH Functions
• Purpose of the HASH function is to produce

a ”fingerprint.

• Properties of a HASH function H :
1. H can be applied to a block of data at any size

2. H produces a fixed length output

3. H(x) is easy to compute for any given x.

4. For any given block x, it is computationally
infeasible to find x such that H(x) = h

5. For any given block x, it is computationally
infeasible to find with H(y) = H(x).

6. It is computationally infeasible to find any pair (x,
y) such that H(x) = H(y)

xy 

9

Simple Hash Function

• Ci=bi1 XOR bi2 XOR ...XOR bim

Where,
Ci=hash value
bij=ith bit of j block

10

Message Digest Generation
Using SHA-1

CV: Chaining variable

11

SHA-1 Processing of single
512-Bit Block

A= 67452301
B= EFCDAB89
C= 98BADCFE
D= 10325476
E= C3D2E1F0

Comparison of SHA
Parameters

12

13

MD5

• Developed by Ron Rivest at MIT

• Input: a message of arbitrary length

• Output: 128-bit message digest

• 32-bit word units, 512-bit blocks

• Son of MD2, MD4

14

MD5

• MD5 processes a variable length message into a
fixed-length output of 128 bits.

• The input message is broken up into chunks of 512-
bit blocks; the message is padded so that its length
is divisible by 512.

• The remaining bits are filled up with a 64-bit integer
representing the length of the original message.

• The main MD5 algorithm operates on a 128-bit state,
divided into four 32-bit words, denoted A, B, C and D.

• These are initialized to certain fixed constants.

15

MD5

Message Digest Generation Using MD5

16

MD5 Logic
• Step 1: Append padding bits

– Padded so that its bit length  448 mod 512 (i.e., the length of padded message is 64 bits
less than an integer multiple of 512 bits)

– Padding is always added, even if the message is already of the desired length (1 to 512 bits)

– Padding bits: 1000….0 (a single 1-bit followed by the necessary number of 0-bits)

• Step 2: Append length
– 64-bit length: contains the length of the original message modulo 264

– The expanded message is Y0, Y1, …, YL-1; the total length is L  512 bits

– The expanded message can be thought of as a multiple of 16 32-bit words

– Let M[0 … N-1] denote the word of the resulting message, where N = L  16

xx

17

MD5 Logic

• Step 3: Initialize MD buffer
– 128-bit buffer (four 32-bit registers A,B,C,D) is used to hold intermediate

and final results of the hash function

– A,B,C,D are initialized to the following values
• A = 67452301, B = EFCDAB89, C = 98BADCFE, D = 10325476

• Stored in little-endian format (least significant byte of a word in the low-address
byte position)

– E.g. word A: 01 23 45 67 (low address … high address)

• Step 4: Process message in 512-bit (16-word) blocks
– Heart of the algorithm called a compression function

– Consists of 4 rounds

– The 4 rounds have a similar structure, but each uses a different primitive
logical functions, referred to as F, G, H, and I

– Each round takes as input the current 512-bit block (Yq), 128-bit buffer value
ABCD and updates the contents of the buffer

– Each round also uses the table T[1 … 64], constructed from the sine
function; T[i] = 232  abs(sin(i))

– The output of 4th round is added to the CVq to produce CVq+1

18

MD5 Logic

MD5 processing of a
single 512-bit block

(MD5 compression
function)







19

MD5 Logic
• Table T, constructed from the sine function

– T[i] = integer part of 232  abs(sin(i)), where i is in radians

20

MD5 Logic
• Step 5: Output

– After all L 512-bit blocks have been processed, the output from the Lth

stage is the 128-bit message digest

– CV0 = IV

CVq+1 = SUM32(CVq, RFI[Yq, RFH[Yq, RFG[Yq, RFF[Yq, CVq]]])

MD = CVL

where

IV = initial value of the ABCD buffer, defined in step 3

Yq = the qth 512-bit block of the message

L = the number of blocks in the message (including
padding and length fields)

CVq = chaining variable processed with the qth block of the
message

RFx = round function using primitive logical function x

MD = final message digest value

SUM32 = addition modulo 232 performed separately on each word

21

MD5 Compression Function
• Each round consists of a sequence of 16 steps operating on

the buffer ABCD

• Each step is of the form
b  b + ((a + g(b, c, d) + X[k] + T[i] <<< s)

Where

a,b,c,d = the 4 words of the buffer, in a specified order that varies
across steps

g= one of the primitive functions F, G, H, I

<<< s = circular left shift (rotation) of the 32-bit arguments by s bits

X[k] = M[q  16 + k] = the kth 32-bit word in the qth 512-bit block of
the message

T[i] = the ith 32-bit word in table T

+ = addition modulo 232

22

Elementary MD5 Operation (Single Step)

23

MD5 Primitive Logical Functions

• One of the 4 primitive logical functions is used in each 4 rounds
of the algorithm

• Each primitive function takes three 32-bit words as input and
produces a 32-bit word output

• Each function performs a set of bitwise logical operations

Round Primitive function g g(b, c, d)
1 F(b, c, d) (b  c)  (b’  d)
2 G(b, c, d) (b  d)  (c  d’)
3 H(b, c, d) b  c  d
4 I(b, c, d) c  (b  d’)

b c d F G H I

0 0 0 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 1 1 0

0 1 1 1 0 0 1

1 0 0 0 0 1 1

1 0 1 0 1 0 1

1 1 0 1 1 0 0

1 1 1 1 1 1 0

Truth table

24

X[k]

• The array of 32-bit words X[0..15] holds the value of
current 512-bit input block being processed

• Within a round, each of the 16 words of X[i] is used
exactly once, during one step
– The order in which these words is used varies from round to

round

– In the first round, the words are used in their original order

– For rounds 2 through 4, the following permutations are used

• 2(i) = (1 + 5i) mod 16

• 3(i) = (5 + 3i) mod 16

• 4(i) = 7i mod 16

25

MD5
• var int[64] r, k

• r[0..15] := {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22}

• r[16..31] := {5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20}

• r[32..47] := {4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23}

• r[48..63] := {6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21}

• //Use binary integer part of the sines of integers as constants:

• for i from 0 to 63

• k[i] := floor(abs(sin(i + 1)) × 2^32)

• //Initialize variables:

• var int h0 := 0x67452301

• var int h1 := 0xEFCDAB89

• var int h2 := 0x98BADCFE

• var int h3 := 0x10325476

• //Pre-processing:

• append "1" bit to message

• append "0" bits until message length in bits ≡ 448 (mod 512)

• append bit length of message as 64-bit little-endian integer to message

* Refer to RFC 1321

26

MD5
• //Process the message in successive 512-bit chunks:

• for each 512-bit chunk of message

• break chunk into sixteen 32-bit little-endian words w(i), 0 ≤ i ≤ 15

• //Initialize hash value for this chunk:

• var int a := h0

• var int b := h1

• var int c := h2

• var int d := h3

• //Main loop:

• for i from 0 to 63

• if 0 ≤ i ≤ 15 then

• f := (b and c) or ((not b) and d)

• g := i

• else if 16 ≤ i ≤ 31

• f := (d and b) or ((not d) and c)

• g := (5×i + 1) mod 16

• else if 32 ≤ i ≤ 47

• f := b xor c xor d

• g := (3×i + 5) mod 16

• else if 48 ≤ i ≤ 63

• f := c xor (b or (not d))

• g := (7×i) mod 16

27

MD5

• temp := d

• d := c

• c := b

• b := ((a + f + k(i) + w(g)) leftrotate r(i)) + b

• a := temp

• //end of main loop

• //Add this chunk's hash to result so far:

• h0 := h0 + a

• h1 := h1 + b

• h2 := h2 + c

• h3 := h3 + d

• var int digest := h0 append h1 append h2 append h3 //(expressed as
little-endian)

28

Other Secure HASH functions
SHA-1 MD5 RIPEMD-160

Digest length 160 bits 128 bits 160 bits

Basic unit of

processing

512 bits 512 bits 512 bits

Number of steps 80 (4 rounds

of 20)

64 (4

rounds of

16)

160 (5 paired

rounds of 16)

Maximum

message size

264-1 bits  

29

HMAC

• Use a MAC derived from a cryptographic

hash code, such as SHA-1.

• Motivations:

– Cryptographic hash functions executes faster

in software than encryptoin algorithms such as

DES

– Library code for cryptographic hash functions

is widely available

30

HMAC

• specified as Internet standard RFC2104
– The mandatory-to-implement MAC for IP security

• uses hash function on the message:
HMACK = Hash[(K+ XOR opad) ||

Hash[(K+ XOR ipad)||M)]]

• where K+ is the key padded out to size

• and opad, ipad are specified padding constants

-ipad =00110110 (36 in hex) repeated b/8 times

-opad=01011100 (5C in hex) repeated b/8 times

(b is number of bits in a block)

• any hash function can be used
– E.g., MD5, SHA-1, RIPEMD-160, Whirlpool

31

HMAC Structure

Hash = embedded hash function (e.g., SHA-1)

M – message

L – number of blocks in M

Yi – the ith block of M 0 < i < L

b = number of bits in a block

n = length of hash code produced by embedded hash

K = secret Key

K+ = K padded on left with zeros so length is b

ipad = 00110110 repeated b/8 times

opad = 01011100 repeated b/8 times

32

Public-Key Cryptography
Principles

• The use of two keys has consequences in:

key distribution, confidentiality and

authentication.

• The scheme has six ingredients

– Plaintext

– Encryption algorithm

– Public and private key

– Ciphertext

– Decryption algorithm

33

Encryption using Public-Key
system

34

Authentication using Public-
Key System

35

Applications for Public-Key
Cryptosystems

• Three categories:

– Encryption/decryption: The sender

encrypts a message with the recipient’s

public key.

– Digital signature: The sender ”signs” a

message with its private key.

– Key echange: Two sides cooperate to

exchange a session key.

36

Requirements for Public-
Key Cryptography

1. Computationally easy for a party B to

generate a pair (public key KUb,

private key KRb)

2. Easy for sender to generate

ciphertext:

3. Easy for the receiver to decrypt

ciphertext using private key:

)(MEC KUb

)]([)(MEDCDM KUbKRbKRb 

37

Requirements for Public-
Key Cryptography

4. Computationally infeasible to determine

private key (KRb) knowing public key (KUb)

5. Computationally infeasible to recover

message M, knowing KUb and ciphertext C

6. Either of the two keys can be used for

encryption, with the other used for

decryption:

)]([)]([MEDMEDM KRbKUbKUbKRb 

38

Public-Key Cryptographic
Algorithms

• RSA and Diffie-Hellman - Stanford

• RSA - Ron Rivest, Adi Shamir and Len
Adleman at MIT, in 1977.
– RSA is a block cipher

– The most widely implemented

• Diffie-Hellman
– Echange a secret key securely

– Compute discrete logarithms

39

Private-Key Cryptography

• traditional private/secret/single-key
cryptography uses one key

• shared by both sender and receiver

• if this key is disclosed communications
are compromised

• also is symmetric, parties are equal

• hence does not protect sender from
receiver forging a message & claiming
the message sent by sender

40

Public-Key Cryptography

• uses two keys – a public & a private

key

• asymmetric since parties are not equal

• uses clever application of number

theoretic concepts to function

• complements rather than replaces

private key crypto

41

Public-Key Cryptography

• public-key/two-key/asymmetric

cryptography involves the use of two keys:

– a public-key, which may be known by anybody,

and can be used to encrypt messages, and

verify signatures

– a private-key, known only to the recipient, used to

decrypt messages, and sign (create) signatures

• is asymmetric because

– those who encrypt messages or verify signatures

cannot decrypt messages or create signatures

42

Why Public-Key
Cryptography?

• developed to address two key issues:

– key distribution – how to have secure

communications in general without having

to trust a KDC with your key

– digital signatures – how to verify a

message comes intact from the claimed

sender

43

Public-Key Characteristics

• Public-Key algorithms rely on two keys with the

characteristics that it is:

– computationally infeasible to find decryption key

knowing only algorithm & encryption key

– computationally easy to en/decrypt messages

when the relevant (en/decrypt) key is known

– either of the two related keys can be used for

encryption, with the other used for decryption (in

some schemes)

44

Public-Key Cryptosystems

45

Security of Public Key
Schemes

• like private key schemes brute force exhaustive
search attack is always theoretically possible

• but keys used are too large (>512bits)

• security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

• requires the use of very large numbers

• hence is slow compared to private key schemes

46

RSA
• by Rivest, Shamir & Adleman of MIT in 1977

• best known & widely used public-key scheme

• based on exponentiation in a finite (Galois) field over

integers modulo a prime

– exponentiation takes O((log n)3) operations (easy)

• uses large integers (eg. 1024 bits)

• security due to cost of factoring large numbers

– factorization takes O(e log n log n log n) operations

(hard)

47

RSA Key Setup

• each user generates a public/private key pair by:

• selecting two large primes at random - p, q

• computing their system modulus N=p.q

– note ø(N)=(p-1)(q-1)

• selecting at random the encryption key e

(e that is relatively prime to ø(N))
• where 1<e< ø(N), gcd(e,ø(N))=1

• solve following equation to find decryption key d

– de mod ø(N) = 1 and 0≤d≤N

• publish their public encryption key: KU={e,N}

• keep secret private decryption key: KR={d,p,q}

ø(N) : (Euler function) number of positive integers less than n and relatively
prime(서로소) to n

gcd : greatest common divisor (최대공약수)

48

RSA Use

• to encrypt a message M the sender:

– obtains public key of recipient KU={e,N}

– computes: C=Me mod N, where 0≤M<N

• to decrypt the ciphertext C the owner:

– uses their private key KR={d,p,q}

– computes: M=Cd mod N

• note that the message M must be smaller than the

modulus N (block if needed)

49

RSA Example
1. Select primes: p=17 & q=11

2. Compute n = pq =17×11=187

3. Compute ø(n)=(p–1)(q-

1)=16×10=160

4. Select e : gcd(e,160)=1; choose e=7

5. Determine d: 1 = de mod 160 and d <
160 Value is d=23 since 23×7=161=
1×160+1

6. Publish public key KU={7,187}

7. Keep secret private key KR={23,17,11}

50

RSA Example cont.

• sample RSA encryption/decryption is:

• given message M = 88 (nb. 88<187)

• encryption:
C = 887 mod 187 = 11

• decryption:
M = 1123 mod 187 = 88

nb : nota bene (유의하라 : note well)

51

RSA Key Generation

• users of RSA must:
– determine two primes at random - p, q
– select either e or d and compute the other

• primes p,q must not be easily derived from
modulus N=p.q
– means must be sufficiently large
– typically guess and use probabilistic test

• exponents e, d are inverses, so use Inverse
algorithm to compute the other

52

Diffie-Hellman

Alice Bob

X=gx mod p X

Y=gy mod pY

k=Yx mod p k`=Xy mod p

k and k` equal to gxy mod p

p, g : large prime , g는 prime number p의 primitive root

• Key Distribution

53

Diffie-Hellman

54

Diffie-Hellman

55

Diffie-Hellman

56

Diffie-Hellman

57

http://upload.wikimedia.org/wikipedia/en/c/c8/DiffieHellman.png
http://upload.wikimedia.org/wikipedia/en/c/c8/DiffieHellman.png

58

Diffie-Hellman

• Alice and Bob agree to use a prime number p=23
and base g=5.

• Alice chooses a secret integer a=6, then sends Bob
(ga mod p)

– 56 mod 23 = 8.

• Bob chooses a secret integer b=15, then sends
Alice (gb mod p)

– 515 mod 23 = 19.

• Alice computes (gb mod p)a mod p
– 196 mod 23 = 2.

• Bob computes (ga mod p)b mod p
– 815 mod 23 = 2.

base g : primitive root of p

59

Diffie-Hellman
• Diffie-Hellman with Three or More Parties

– Alice, Bob, and Carol together generate a secret

key.

Alice Bob Carol

(1) X=gx mod p
(2) Y=gy mod p

(3) Z=gz mod p

(4) Z`=Zx mod p

(5) X`=Xy mod p

(6) Y`=Yz mod p

(7) k=Y`x mod p (8) k=Z`y mod p (9) k=X`z mod p

k= gxyz mod p

60

Diffie-Hellman

• Disadvantage of DF

– Providing no authentication of the two

communication partners

61

Other Public-Key
Cryptographic Algorithms

• Digital Signature Standard (DSS)

– Makes use of the SHA-1

– Not for encryption or key echange

• Elliptic-Curve Cryptography (ECC)

– Good for smaller bit size

– Low confidence level, compared with RSA

– Very complex

62

Key Management
- Public-Key Certificate Use

Summary
• Approaches to Message Authentication

– MD5, SHA-1

• Secure Hash Functions and HMAC

• Public-Key Cryptography Principles

• Public-Key Cryptography Algorithms

– RSA, Diffie Hellman

• Digital Signatures

• Key Management

63

