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Introduction-Industry 4.0

Fourth Industrial Revolution
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Introduction — Edge Application

* Shopping with Augmented Reality
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[1] https://www.youtube.com/watch?v=UQcJSZPpNhA&feature=youtu.be )
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Al Applications

" Al technology is currently being applied to solutions]
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> . . e .
_—e—————————————————————————————— SerVICGS, Reta||, and Energy, aﬂd It Is eXpeCted that
Artificial Intelligence Revenue by Region, World Markets: 2015-2024 c c .
e sales from Al technology will continue to increase
: = North America Lglobally. )

($ Millions)

@
S
>

=
>
3

=
=)
<

Financial Services @

$-
2015 2016 2017 2018 2019 2020 2021 2022 2023

$10,000 *Western Europe
uEastern Europe
$8,000 # Asia Pacific
#Latin America
$6000 . middle East
© Africa
$4,000
$2,000 I |
- = W I I
2024

KHu



Edge Computing Market Trends

Edge computing brings data Global Edge Computing Market Size and Forecast, 2016 — 2025
KEY processing /){)wpr at the (USS Million)
edge of the network, closer
B EN EFITS of to the source of data
Edge Computing EDGE -
L 3l De 101_5\ -
\10‘
5 %
c,th‘la
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Reliable Operations  Securi CtEfft It p ability
w:lhl ntermitte t Compl lllll Solutio n Legacy %
nnnnn tivity & M e Dtics Source: Variant Market Research

- The global edge computing market is expected to reach about $ 16.71 billion by 2025,
(2017~2025) Year average growth rate of 35.5%
- Among the many fields that utilize Edge Computing in addition to 5G, it is expected to show

the highest growth rate in areas where fast service provision is important (Smart City, Smart
Factory, etc.)
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Edge Al Software Market

1111 | Atiractive Market O rtunities in the Edge Al Software Market
EDGE Al SOFTWARE MARKET, BY REGION (USD MILLION) e o
1152
- 26.5«
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3% _— l = The global edge Al software market size is projected to reach
USD 1,152 million by 2023, from USD 356 million in 2018.
r— = The emergence of 5G network to bring IT and telecom together
= . are expected to provide growth opportunities for vendars in the
= - edge Al software market.
2016 M7 2018 2019 2020 01 nN2 2023 = Major factors driving the market are the increasing enterprise

workloads on the cloud and rapid growth in the number of

intelligent applications.
ENorthAmerca ¥ Euope APAC EMRAA LatinAmerica
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Source: MarketsandMarkets Analysis

- The Edge Al software market is expected to grow at a CAGR of approximately 26.5% from $ 356
million in 2018 to $§ 1,122 million in 2023, driven by increased cloud loads and accelerated
development of various Al applications.

KHu «

IIIIIIIIIII
NETWORKING LAB



Introduction — Edge Al

v' Changes in the computing paradigm (Centralized Cloud Computing -> Distributed Edge Computing)
- Real-time, high-capacity, low-latency service increases
- The emergence of smart city and the necessity of utilization of artificial intelligence due to the 4th industrial
revolution
— Increase in role of artificial intelligence algorithm in distributed edge computing environment

Edge Computing Application
For
Smart Clty

Artificial
Computing Intelligence

4th Industrial Revolution Smart City and Edge Computing
x BN 20199 =LY ICT Al & 100 MY $t= IDC
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Introduction —Edge Al

The current premise in classical ML is based on a single node in a centralized and remote data center with full access to
a global dataset and a massive amount of storage and computing power, sifting through this data for inference.

Nevertheless the advent of a new breed of intelligent devices and high-stake applications ranging from drones to
augmented/virtual reality (AR/VR) applications, and self driving vehicles, makes cloud-based ML inadequate. These

applications are real-time, cannot afford latency, and must operate under high reliability, even when network
connectivity is lost.

WHY Al AT THE EDGE MATTERS

Bandwidth Latency Availability

1 billlon cameras WW (2020) 30 images per second 50% of world at less than 8mbps

308 Inference/Second 200ms latency Only 73% 3G/4G availability WW

Billions of intelligent devices will take advantage of DNNs
to provide personalization and localization as GPUs

become faster and faster over the next several years.

.
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Introduction — Edge Al

* A user enjoying visual-haptic perceptions requires not

* A remotely controlled drone or a robotic assembler in a

KHu

Indeed, an autonomous vehicle that needs to apply its
brakes, cannot allow even a millisecond of latency that
might result from cloud processing, requiring split second
decisions for safe operation [2], [3].

only minimal individual perception delays but also
minimal delay variance, to avoid motion sickness [4], [5].

smart factory should always be operational even when
network connection is temporarily unavailable [6]-[8], by
sensing and reacting rapidly to local (and possibly
hazardous) environments.

[2] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, “The architectural implications of autonomous driving: Constraints and acceleration,” in Proc. of the 23rd
ACM ASPLOS, ASPLOS ’18, (Williamsburg, VA, USA), pp. 751-766, ACM, Mar. 2018.

[3] M. K. Abdel-Aziz, C.-F. Liu, S. Samarakoon, M. Bennis, and W. Saad, “Ultra-reliable low-latency vehicular networks: Taming the age of information tail,” in Proc. of GLOBECOM
[accepted], (Abu Dhabi, UAE), Dec. 2018.

[4] ). Park and M. Bennis, “URLLC-eMBB slicing to support VR multimodal perceptions over wireless cellular systems,” ArXiv preprint, vol. abs/1805.00142, May 2018.

[5] ABI Research and Qualcomm, “Augmented and virtual reality: The first wave of 5g killer apps,” white paper, Feb. 2017.

[6] T. Kagawa, F. Ono, L. Shan, K. Takizawa, R. Miura, H. Li, F. Kojima, and S. Kato, “A study on latency-guaranteed multihop wireless communication system for control of robots and
drones,” in Proc. of 20th WPMC, (Yogyakarta, Indonesia), pp. 417— 421, Dec. 2017.

[7] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs,” IEEE Transactions on
Wireless Communications, vol. 15, pp. 3949-3963, June 2016.

[8] A. Fotoubhi, H. Qiang, M. Ding, M. Hassan, L. Galati Giordano, A. Garcia-Rodriguez, and J. Yuan, “Survey on UAV cellular communications: Practical aspects, standardization €\ j

advancements, regulation, and security challenges,” ArXiv preprint, vol. abs/1809.01752, Sept. 2018. INNIYEEFL\I;:I%gYKING s



Technology Trends

‘ Digital Twin

Biochips
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Introduction

Gartner 2019 Ten Trends in the Future

@ Autonomous Things, @ Augmented Analytics, 3 Al-Driven Development, @ Digital Twin, G Empowered Edge,
® Immersive Experience, 7) Block chain, (8) Smart Spaces, (9 Digital Ethics and Privacy, @ Quantum Computing

Future technology change

Autonomous Things Augmented Analytics Al-Driven Development Empowered Edge

% &X: Top 10 Strategic Technology Trends 2019, Gartner
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Enabling Technologies to Implement Edge Al

Edge Computing

Edge Al
Machine Learning Block Chain

* Deep Learning

* Deep Reinforcement
Learning

* Federated Learning
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Cloud VS. Edge Al

KHu

L Can train large neural network model
L High computation resources

U Big Data processing

U Easy to scale

U Low cost storage

Real-time predictions for mission-critical
applications

Efficient use of network bandwidth
Process data closest to the source

Low latency response

Support mobility

N W Y .

Cons

O High service delay

O High bandwidth cost

U Sending raw data over the Internet to
the cloud have privacy, security and
legal issues

Cons

O Low computation power than the cloud
U Computation resources are Less scalable

than cloud
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Type of Machine Learning Schemes for Cloud and Edge Al

Supervised Learning

By feeding an input data sample, the goal of supervised learning is to predict a target quantity, e.g., regression, or
classification of the category within predefined labels. This ability can be obtained by optimizing the NN parameters by
feeding training data samples, referred to as a training process. In supervised learning, the input training samples are
paired with the ground-truth output training samples. These output samples ‘supervise’ the NN to infer the correct
outputs for the actual input samples after the training process completes.

Unsupervised Learning

The training process of unsupervised learning is performed using only the input training samples. In contrast to
supervised learning, unsupervised learning has no target to predict, yet aims at inferring a model that may have
generated the training samples. Clustering of un-grouped data samples and generating new data samples by learning
the true data distribution, i.e., a generative model, belong to this category

\
U\

l(l'lU [9] Park, J., Samarakoon, S., Bennis, M. and Debbah, M., 2018. Wireless network intelligence at the edge. arXiv preprint arXiv:1812.02858. INTELLIGENT
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Type of Machine Learning Schemes for Cloud and Edge Al

Reinforcement Learning (RL) [9]

The goal of RL is make an agent in an environment take an optimal action at a given current state, where the
interaction between the agent’s action and state through the environment is modeled as a Markov decision process
(MDP).

* When each action is associated with a return, the agent takes an action that maximizes its predicted cumulative
return, e.g., Q-learning that maximizes the Q value for each state, as illustrated in Figure(a).

* |In Q-learning, the larger state dimension, the more computation. This problem is resolved by deep Q-learning as
shown in Figure (b), where a NN approximates the Q function and produces the Q values by feeding a state.
These value-based RL can take actions only through Q values that are not necessarily required. Instead, one can
directly learn a policy that maps each state into the optimal action, which is known as policy-based RL whose
variance may become too large [10].

* Actor-critic RL is a viable solution to both problems, comprising a Neural Network (NN) that trains a policy (actor
NN) and another NN that evaluates the corresponding Q value (critic NN), as visualized in Figure (c).

(2 learn (@) learn @learn (2)learn
. Q value Q NN QNN policy NN
\y ) C

B 100 10

#aCiore

actions
(1) obtain state & reward (1) obtain state & reward (1) obtain state & reward
actor does action based on the policy
with Q-value
(a) Classical Q-learning. (b) Deep Q-learning. (c) Actor-critic RL.

Examples of RL: (a) classical Q-learning without any Neural Network; (b) deep Q-learning with a Neural Network, and (c) actor — critic RL with actor and critic Neural Networks.

[9] Park, J., Samarakoon, S., Bennis, M. and Debbah, M., 2018. Wireless network intelligence at the edge. arXiv preprint arXiv:1812.02858.
[10] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning with function ap proximation,” in Proc. of the;
I(I-lU 12th NIPS, NIPS’99, (Colorado, USA), pp. 1057—1063, MIT Press, Dec. 1999 . 4
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Challenges of utilizing Deep learning in Cloud and Edge Al

* |t requires high computation resources to process the big data (high-dimensional data)
to train the prediction models.

* |t is difficult to find a suitable prediction model among the various types of deep
learning models, such as Multilayer Perceptron (MLPs), Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Convolutional Recurrent Neural Networks
(CRNNs), etc. [11].

* |t is difficult to tune parameters such as the number of layers (i.e., the depth of the
network), types of layers (e.g., Convolutional, Recurrent and Fully Connected
layers), and learning rate to improve the accuracy of the prediction model.

) _ . , N
output (logit) eodbach = g N >

VA S - N [ R S o A Ty, o ol Sl
o e @ o e e o o o (o o 00 )\ 005
| 6.0 0 (| 0 O oo : : e L3
hidden { L T S S Jpooling. ..k = e - E
o Q LS W || MLALN\S

(a) MLP. (b) RNN. (c) CNN. (d) DBN. (e) AE. (f) GAN.

Types of NN architectures: (a) multilayer Perceptron (MLP); (b) recurrent neural network (RNN); (c) convolutional neural network (CNN); (d) deep belief network
(DBN) with restricted Boltzmann machines (RBMs); (e) auto encoder; and (f) generative adversarial network (CAN) [3]

[9] Park, J., Samarakoon, S., Bennis, M. and Debbah, M., 2018. Wireless network intelligence at the edge. arXiv preprint arXiv:1812.02858.
l(l'lU [11] I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning”, in MIT Press, 2016.
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Content Caching at Edge (Centralized)

* Caching popular contents at edge nodes such as base stations is a crucial solution for
improving users’ quality of services in next generation networks.

* However, it is very challenging to correctly predict the future popularity of contents and
decide which contents should be stored in the base station cache.

* Recently, with the advances in big data and high computing power, deep learning models
have achieved high prediction accuracy.

Master Node trains
deep learning models,
predicts content’s
popularity.

Sending recommend
contents list to download

Cloud Data Center

< :

‘ Contents

Cache
Slave Node caches contents /Base Station Content server
based on the recommend ?

contents list. ] l
[ Users ]

System model of learning-based caching at the edge.

l("lU [12] Kyi Thar, Nguyen H. Tran, Thant Zin Oo, Choong Seon Hong, "DeepMEC: Mobile Edge Caching Using Deep Learning," IEEE Access, Vol.6, Issue (K(\
1, pp.78260-78275, December 2018
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Content Caching at Edge (centralized)
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[12] Kyi Thar, Nguyen H. Tran, Thant Zin Oo, Choong Seon Hong, "DeepMEC: Mobile Edge Caching Using Deep Learning," IEEE Access, Vol.6, Issue @
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Content Caching at Edge (centralized)
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[12] Kyi Thar, Nguyen H. Tran, Thant Zin Oo, Choong Seon Hong, "DeepMEC: Mobile Edge Caching Using Deep Learning," IEEE Access, Vol.6, Issue N

l(l'lU 1, pp.78260-78275, December 2018
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Content Caching at Edge (centralized)
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Caching related performance comparisons: (a) Cache hit, (b) Backhaul usage comparison, and (c) Access delay comparison.

-
|(|'|U [12] Kyi Thar, Nguyen H. Tran, Thant Zin Oo, Choong Seon Hong, "DeepMEC: Mobile Edge Caching Using Deep Learning," IEEE Access, Vol.6, Issue (&/

1, pp.78260-78275, December 2018 NETWORKING LAB



Content Caching at Edge (centralized)

Data Center

/Master Node

Content server

ssearches, selects and trains
deep learning models

*buys virtual cache storage
and generate content list to

Internet

Contents

store based on

\_the prediction results.

Infrastructure Provider (InP)

Ineyyoeg

[

Slave Nodes of each
MVNO cache contents

based on the recommend
contents list.

Virtualized Cache Space
leased from InP
by each MVNO.

.

p
Users

D MVNO1’s user
D MVNO2’s user
.

o
mu
0L

Virtualized cache management for MVNO.
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---------------------------- Model Searching and Selection Module

4 ,{ Predicted Cache size for (t+1) l
3
8 Prediction 2
= Model 1
a Output Cache
= | ﬁ Buying

! : Decision

'--'(a) Cache ngand Prediction Management .Virtua wea
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8 \ i Decision
= d Predicti tn+1
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@ (b) Content’s Popularity conts))fel il

1l Score Prediction

The overview prediction model used in the proposed scheme: (a)
Cache demand prediction, (b) Content’s popularity scores prediction.

[13] Kyi Thar, Thant Zin Oo, Yan Kyaw Tun, Do Hyeon Kim, Ki Tae Kim, and Choong Seon Hong, "A Deep Learning Model Generation @
Framework for Virtualized Multi-access Edge Cache Management,”
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Content Caching at Edge (centralized)

KHu

n layers x m cells

n layers x m cells

(1 (D' ©
“‘ CNN “[ RNN [l cNN .|.“‘ RNN I
= 1 % S =
B st s @
—

Summary of output layer activation function.

Activation | Equation Range
Softmax Softmax(z;) = thzj [0,1]
i
Sigmoid Sigmoid(z;) = 1+1_z [0,1]
1
N STe _
Tanh Tanh(z;) = ——LL [-1,1]
e E.
for z; :
Relu Relu(z) = 4 > Torzi <0-1 5
z, forz; = 0.

Deep Learning Models Framework.

[13] Kyi Thar, Thant Zin Oo, Yan Kyaw Tun, Do Hyeon Kim, Ki Tae Kim, and Choong Seon Hong, "A Deep Learning Model Generation

Framework for Virtualized Multi-access Edge Cache Management,”

L/A'B)
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Cloud to Edge Al

* Classical ML exerts severe demands in terms of energy, memory and

computing resources, limiting their adoption for resource constrained
edge devices.

* The new breed of intelligent devices and high-stake applications (drones,
augmented /virtual reality, autonomous systems, etc.), requires a novel
paradigm change calling for distributed, low-latency and reliable ML at
the wireless network edge (referred to as edge ML).

KHu
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* Model Parallelism: When an Deep Learning model size is too large, a
single Deep Learning structure can be split into multiple segments that
are distributed over multiple devices, i.e., model parallelism or split.

Distributed Training

* Data Parallelism: An Deep Learning training process can be split by
parallelizing the training data samples to multiple devices that have an
identical deep learning model structure, referred to as data parallelism

or split.
Model Parallelism Data Parallelism
e LT e !
1 | I 1
1 | 1 |
————————————————— | I : I :
1 Machine 4 : I : I :
| | i o |
—————————— — —_— | |
s ———— = o | I Machine1 | | Machine2 |
i Machine 2 [ ]:|[ ] Machine3d3| = S————————— T !
| N .
-_____________®» YW - ____________1 : : : _:
_______________ | 1 | 1 1
i Machine 1 : : P! :
I —— i o i
| I I 1
1 | 1 |
' b i

K"lU [14] https://xiandong79.github.io/Intro-Distributed-Deep-Learning {N
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https://xiandong79.github.io/Intro-Distributed-Deep-Learning

Model Parallelism
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[15] https://jcrist.github.io/dask-sklearn-part-1.html
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https://jcrist.github.io/dask-sklearn-part-1.html
https://www.slideshare.net/MateuszDymczyk1/deep-learning-at-scale-70024644

Data Parallelism to Federated Learning (FL)

* Standard machine learning approaches require centralizing the ( Federated )
training data on one machine or in a datacenter. Learning
* Federated Learning is a machine learning setting where the goal Global Model

is to train a high-quality centralized model with training data
distributed over a large number of clients each with unreliable
and relatively slow network connections.

pa31e82483y

* Learning algorithms for this setting where on each round, each
client independently computes an update (model state
information (MSI))to the current model based on its local datq,

and communicates this update to a central server, where the | Learn and train “Local Model”
client-side updates are aggregated to compute a new global
model.

I(I-lU [17] https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (K(
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Data Parallelism

Dataset Master
(" D

Global Model (), A88regation

Device

Learn and train “Local Model”

(a) Master-Devices

model state information (MSI)

l("lU [9] Park, J., Samarakoon, S., Bennis, M. and Debbah, M., 2018. Wireless network intelligence at the edge. arXiv preprint arXiv:1812.02858. (&/

Helper

~
Global Model r\,Aggregaiion

ST o— Aggregation

Data-Set

0 D o
Device Device evice

(b) Helper-Devices (c) Device-Device
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Federated Learning (Key technology to enable edge Al)

Model Aggregator

Updating Global Model

Global Model

Global Model Generation

Federated
Learning
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What impact might FL bring to the Al community?

Federated learning opens up a brand new research field in Al.

Today, gigantic amounts of data are generated by consumer devices
such as mobile phones on a daily basis.

These data contain valuable information about users and their
personal preferences: what websites they mostly visited, what social
media apps they mostly used, what types of videos they mostly
watched, etc.

With such valuable information, these data become the key to %,
building better and personalized machine learning models to deliver 2N c
personalized services to maximally enhance user experiences. A_\@ 0

Federated learning provides a unique way to build such personalized 0O

models without intruding users’ privacy.

[18] https://medium.com/syncedreview/federated-learning-the-future-of-distributed-machine-learning- @
KHU eecos242d897 e X
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Federated Learning [19] might similar to distributed machine learning on a
technical level, there are some major differences to applications in data
centers where the training data is distributed among many machines [20].

Unique Characteristics of Federated Learning

[ Huge number of clients

J Non-identical distributions

d Unbalanced number of samples
 Slow and unstable communication

[19] https://florian.github.io/federated-learning/

[20] Kone¢ny, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T. and Bacon, D., 2016. Federated .
I(I-lU learning: Strategies for improving communication efficiency. arXiv preprint arxiv:1610.05492. (K(
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https://florian.github.io/federated-learning/

Centralized | Edge Federated
Learning Computing | Learning

How is Federated Learning and improvement to Al¢

* Personal data never leaves the user’s
device, only updates made to the model
are transferred. This data is encrypted
making it impossible for anyone to
intercept the data and retro engineer it.

. . . P
* The updates are lighter than the original rivacy
7
user’s data. Consec.quen’rly ’r.he overall S X \/ \/
workload needed is lower in Federated
Learning than in cloud based Latency X \/ \/
architectures or in edge computing, which
makes it cheaper and more convenient. Cost/
P Feasibility \/ X \/
* The model is located in the user’s device,
allowing for real time inferences with no
latency problems.
[21] https://medium.com/frstvc/otium-neural-newsletter-1-federated-learning-a-step-closer-towards- =
KHU  confidential-ai-efe28832006f @
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Potential future trends related to FL?

* Federated learning is revolutionizing how machine learning models are
trained.

* Google has just released their first production-level federated learning
platform, which will spawn many federated learning-based applications
such as on-device item ranking, next-word prediction, and content
suggestion.

* In the future, machine learning models can be trained without counting on
the compute resources owned by giant Al companies.

* And users will not need to trade their privacy for better services.

[22] https://medium.com/syncedreview/federated-learning-the-future-of-distributed-machine-

learning-eec95242d897
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Limitations of Federated Learning

* Maintaining massively distributed systems
* Limited connectivity to all the devices at all the time

* Unbalanced data in terms of bias or feedback. This problem however
can be reduced to a certain extent by smartly selecting devices from
which to get a feedback at a given moment.

* Developing an infrastructure or models which can keep up with the pace
of the dynamic and continuous learning involved in the approach

* Running optimization algorithms across highly distributed data sets

[23] Ammad-ud-din, M., Ivannikova, E., Khan, S.A., Oyomno, W., Fu, Q., Tan, K.E. and Flanagan, A., 2019. Federated .
K'.lU Collaborative Filtering for Privacy-Preserving Personalized Recommendation System. arXiv preprint arXiv:1901.09888. (N
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Model Aggregation Optimization

Round i Round i+1
A - — _——
Selection Configuration Reporting I Selection Configuration Repo...
A A A I A = A
-~ Y .ol Y o : -~ Y Y A
. jL__ Training | : )‘(
I
. [ Training (&) | : ‘ | ini —
| g\&) § t 7 | Training
Jr % | 1 j}
[ | - [ Traini ' ' X
| Training , i
,, BERY
. x : |I : I Training —
IA 3? I 1 1 jh T
. : X : : 'I | Trainin — Mt
T4 : | | | g Z;Wt
] I F . FJ' : t=1
YV YVY ¥ 5 | R 2R 2 _
3 3 7 | —Aggregation ©' T 7 g Federated averaging
P I I [
[
. Device . L : : C
Devices check-in with the FL server, @ On-device traur“nng is performed,
O Server rejected ones are told to come back later model update is reported back
3 Persistent storage Servrar reads model checkpoint from Server aggregates updates |.nto
persistent storage the global model as they arrive
X Rejection (“come back later!") ® Model and configuration are sent Server writes global model
to selected devices checkpoint into persistent storage

i\\f Device or network failure

Figure 1: Federated Learning Protocol

[24] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanoyv, V., Kiddon, C., Konecny, J., Mazzocchi, S., McMahan, H.@nd
K"lU Van Overveldt, T., 2019. Towards Federated Learning at Scale: System Design. arXiv preprint arXiv:1902.01046. praerr



Model Aggregation Optimization

Algorithm 1 FederatedAveraging targeting updates
from K clients per round.
Server executes:
initialize wq
foreachroundt =1,2,... do
Select 1.3K eligible clients to compute updates
Wait for updates from K clients (indexed 1,..., K)

(A%, n*) = ClientUpdate(w) from client k € [K].
Wy = Y., A* /] Sum of weighted updates

ne =y, n* I/ Sum of weights

Ay = AF/n; Il Average update

Wiy — we + Ay

ClientUpdate(w):
B «+ (local data divided into minibatches)
n < |B| /I Update weight
Wipit < W
for batch b € B do
w +— w —nVE(w;b)
A n-(w—wpy) [ Weighted update
/I Note A is more amenable to compression than w
return (A, n) to server

U 2019. Towards Federated Learning at Scale: System Design. arXiv preprint arXiv:1902.01046. e "/‘
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Model Aggregation Optimization

Differentially Private Federated Learning: A Client Level Perspective

1. Incorporating a randomized mechanism into a communication round of Federated Learning

« Sampling m, out of K clients at round ¢ « Clients optimize w, on their data, leading to w® + Update with clipped averaged & distorted models

« Distributing central model w, + Updates Aw* = w* — w, are centralized

IO AN olmE e
\ / =|w -l-Aw
AL RAL eEPEEER @@ O T

Distorted average

2. Privacy accountant; called before each communication round

o, and m, determine increase of § during a communication round « If 8,4, stays below threshold § for a certain o, and m,, a new round may start
ol t : communication round index
How should we choose ”* /., for all t, m,  :numberof subsampled clients at roundt
@ i i +__Z Awk + N I‘ O¢ / such that model performance is o :noise parameter at round t
t+1 t 7n£ maximized throughout the course of Oy : pfoba:lty thla €diff privacy is broken at round t
00 ' W, : central mode
training, while § stays smaller than §. wh - mda cpimisedbydienck

l<|-|U [25] Geyer, R.C., Klein, T. and Nabi, M., 2017. Differentially private federated learning: A client level perspective. arXiv preprint arXiv:1712.07557. NETWORKING LAB



Federated Learning with Blockchain

* Machine learning models trained on data from blockchain-based

marketplaces have the potential to create the world’s most powerful
artificial intelligences.

* They combine two potent primitives: private machine learning, which
allows for training to be done on sensitive private data without revealing
it, and blockchain-based incentives, which allow these systems to attract
the best data and models to make them smarter.

* The result is open marketplaces where anyone can sell their data and
keep their data private, while developers can use incentives to attract the
best data for their algorithms to them.

[26] https://medium.com/@FEhrsam/blockchain-based-machine-learning-marketplaces- (N\
|(|'|U cb2d4dae2c17?fbclid=IwAR2acQ2t143gp4chJTPqcIMCITVpaPalLGv8xuxc8rFlwdFqQIn5reK5S07PM il
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Federated Learning with Blockchain

block genar‘atimn% block propagation

, (2)
global model i:{_} = . mining reward @)
~@= -

Cross
verification

Blockchain data reward ",
(1)
Federated
learning 4
"""""""""""""""""" )@
r\4 ledger r \4
(a) Vanilla FL (b) Proposed BlockFL

Fig. 1. An illustration of (a) the vanilla federated learning (FL) [4], [5] and
(b) the proposed block-chained FL (BlockFL) architectures.

Receiving the reward proportional to the number of its data samples to locally update the model.

l(l'lU [27] Kim, H., Park, J., Bennis, M. and Kim, S.L., 2018. On-device federated learning via blockchain and its latency analysis. arXiv )
preprint arXiv:1808.03949. NETWORKING LAB



Edge Al Use Cases in Edge Analytics Application
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“Analytics” refers to the systematic use of technologies, methods, and data to derive insights
and enable fact-based decision-making for planning, management, operations, measurement,

and learning.

[28] https://www.talend.com/resources/edge-analytics-pros-cons-immediate-local-insight/
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Edge Al Use Cases in Edge Analytics Application

Image analytics :

* Image analytics is a classic Al application area. The availability of huge
numbers of images on the web and of pre-classified data sets has recognition
of various object types.

* For example, real-time recognition of a constantly changing scene based on
video streaming requires high data bandwidth if performed in the cloud.
Alternatively, Al on the Edge enables local analysis of the visual scene in
various flavors, such as understanding the scene for context analysis,
simultaneous multi-object detection and recognition for obstacle avoidance,
people identification for secure access, and more.
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* Surveillance and Monitoring: Deep Learning-enabled smart cameras
could locally process captured images to identify and track multiple
objects and people, detecting suspicious activities directly on the edge
node.

Edge Al Use Cases in Edge Analytics Application

* Smart cameras minimize communication with the remote servers by only
sending data on a triggering event, also reducing remote processing and
memory requirements.

* Intruder monitoring for secure homes and monitoring of elderly people
are typical applications.

People: 65
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Edge Al Use Cases in Edge Analytics Application

* Autonomous Vehicles: A smart
automotive camera can recognize
vehicles, traffic signs, pedestrian, road,
and objects locally, sending only
information needed to perform
autonomous driving to the main
controller.

* A similar concept can be applied to
robots and drones.

KHu N
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* Sensors attached to a machine can measure vibration, temperature, and noise
levels and Al performed locally can infer the state of the equipment, potential
anomalies, and early indications of failure. In this case, local Deep Learning
could also communicate with cloud-based services to deliver data for specific
analyses and corrective actions.

Predictive Maintenance

W ha t | F yO U cCou ld “ns 7 Reduce Failures, maximize performance

Edge Al Use Cases in Edge Analytics Application

Predictive Maintenance in Factories:

Improve customer satisfaction Optimize asset availability and life

,"’v“ \\. '*-,,___»1 k ~ "/’/ ‘
Enable smarter replacement and inspection 4 “-\ s / ‘ )
2 N <y Lower risk exposure
L ) \ /// 3
Improve fuel cost efficiency ! | @ Decrease loss of service
Decrease planned & unplanned maintenance p A \, ' Optimize labor and operations costs
./’ s ‘\‘-,
\ \ | / 3 J \_\ ,v"
‘ Y / - \ /
Reduce required compliance activity

l-l Optimize workFforce productivity @

INTELLI GENT
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Edge Al Use Cases in Edge Analytics Application

Table 1. Trade-offs of the different types of maintenance

Benefits Challenges

+ Potentially greater damage to machine

+ Maximum utilization of tooling or beyond failed part
machine components * Unplanned downtime

* Higher maintenance costs

Reactive

* Increased replacement costs over time

* Need for additional spare parts
inventory

* Increased planned downtime

* Less likelihood of broken machinery
Planned * Less unplanned downtime
* More cost-effective than reactive

* Longer lifespan of equipment

* Decreased downtime, planned and * Ongoing maintenance and monitoring
unplanned

Proactive A . * Need for organizational changes
* More cost-effective than run-to-failure -
* Increased training

or planned maintenance
* Lower spare parts inventory

Source: Deloitte analysis. Deloitte University Press | dupress.deloitte.com

[29] https://www?2.deloitte.com/insights/us/en/focus/industry-4-0/using-predictive-technologies-for-
I(|-|U asset-maintenance.html|
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Edge Al Use Cases in Edge Analytics Application

Figure 1. Maintenance strategy continuum

Edge Analysis in Smart Factory
<50% OEE* 50%-75% OEE 75%-90% OEE >90% OEE
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sensing data to predict

Defect elimination to
seatlilE J machine reliability

Eix when broken maintenance activities

Reliability: OEE and uptime

Level | Level I Level IlI Level IV

* Original equipment effectiveness (OEE)

Source: Deloitte analysis. Deloitte University Press | dupress.deloitte.com

[29] https://www2.deloitte.com/insights/us/en/focus/industry-4-0/using-predictive-technologies-for-
Kl'lU asset-maintenance.html| SER  Lae
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Edge Al Use Cases in Edge Analytics Application

Edge Analysis in Smart Factory
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This data gives valuable insights regarding engine life, service history, recommended versus actual
fuel levels, etc. which are constantly monitored in real time to ensure efficient operations. Predictive
maintenance enhances coordination between maintenance team and supervisors, thus assisting
them with effective decision making, backed by data. The decision makers can then take a call
whether to expedite a service or look for more information. These solutions not only help cut
maintenance costs but more importantly avert a crisis leading to enhanced customer satisfaction
and stickiness.

|(|'|U [30] https://www.gslab.com/blog-post/predictive-maintenance/ e



https://www.gslab.com/blog-post/predictive-maintenance/

Conclusion

* Edge Al can be deployed by combining Federated Learning, Block Chain,
and Edge Computing

* Previously, powerful Al apps required large, expensive data center-class
systems to operate. But edge computing devices can reside anywhere, as
demonstrated in the above use cases.

* Al at the edge offers endless opportunities that a can help society in
ways never before imagined.
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