
Introduction to AI Networking

Choong Seon Hong

cshong@khu.ac.kr
Department of Computer Science and Engineering

Kyung Hee University, Korea

mailto:cshong@khu.ac.kr

• It is a networking technology for end-to-end connectivity and networking
management technology using AI learning algorithms such as :

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

• Topics to be covered in the class
• Edge Computing

• Federated Learning

• Resource Management

• D2D Communication Networks

• UAV networks

• Energy Management

• Security Issues

• Meta-learning and Transfer Learning

What is AI Networking 2

Lecture Schedule and Evaluation 3

Mid-term Exam: 50% 50%

Presentation & Project 40%

Presence 10%

Week Contents

1st Week Introduction to AI Networking

2nd Week Networking and Future Internet

3rd Week Mobile Networking(LTE & 5G)

4th Week Machine Learning based Edge Computing

5th Week Federated Learning and Democratized Learning

6th Week AI based Network Resource Management 1

7th Week AI based Network Resource Management 2

8th Week AI based D2D Communication Networks

9th Week Mid-term Exam

10th Week UAV-Assisted Wireless Networks

11th Week AI based Energy Management

12th Week Vehicular Edge Networking

13th Week Next Generation Security based on Machine Learning

14th Week Meta-Learning based Networking Architecture

15th Week 6G & AI

16th Week Term Project Presentations

[Schedule]

[Evaluation]

The Evolution of Artificial Intelligence (AI) 4

1950
Alan Turing

Proposes the

Turing Test

1950
Isaac Asimov

proposes the Three

Laws of Robotics

1951
First AI based

Program was

written

1955
First self learning

game playing

program is written

1959
MIT AI Lab

is setup

1961
First Robot is inducted

into GM’s assembly

production line

1963
First Machine

Learning program

is written

1964
First demonstration of

an AI program which

understand Natural

Language

1965
First AI based

Chat-bot

(ELLZA) was

created

1969
Stanford Research

Institute (SRI)

demonstrates the first

locomotive and intelligent

robot (Shakey)

1969
First autonomous

vehicle is created at the

Stanford AI LAB

1974
First rule based AI

expert system for

medical diagnostics

1980
LISP based machines

are developed and

marketed

1986
Learning

representations by

back-propagating error

(Backpropagation)

[G. Hinton]

1997
IBMs Deep Blue beats

Gary Kasparov at

Chess

1998
Convolutional

Neural Network is

introduced by Yann

LeCun

2004
DAPRA introduces

the first challenge

for Autonomous

Vehicles

2005
AI based

recommendation

engines

2009
Google builds

Self Driving Car

2010
Narrative Science’s

AI demonstrates

ability to write

reports

2011
IBM Watson beats

Jeopardy

champions

2011
Personal

Assistants like Siri,

Google Now and

Cortana become

mainstream

2015
Elon Musk and others

announce a $1B non

profit open source

initiative, OPEN AI to

develop friendly AI

2016
Google’s

Deepmind AlphaGo

defeats Go’s

champions

2016
NVIDIA announces

supercomputer for

Deep Learning and

AI

Modified from Source: https://twitter.com/mikequindazzi/status/835589969909424130

2017
AlphaGo Zero which

learns from scratch

2018
OpenAI 5

(Dota 2)

2019
OpenAI 5

(Defeat the world’s

top Dota 2 team)

1999
First Emotional AI

machines

demonstrated at

MIT AI Lab

1990
Probabilistic models of

sequences

(Yoshua Bengio)

Turing Award

2020

OpenAI’s

GPT-3

Deep Learning Taxonomy 5

Modified from source: Fadlullah, Zubair, et al. "State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems." IEEE Communications Surveys & Tutorials (2017).

Deep
Learning

Reinforcement
learning

Unsupervised
Learning

Supervised
learning

• Deep Q-learning
• Double Q-learning
• Prioritized experience replay

Reinforcement Learning

Advertising and business intelligence
(Google ads, etc.), Weather forecasting,
Market forecasting, Political campaigns

Real-time decisions, Game Artificial
Intelligence, Learning tasks, Skill
acquisition, Personal assistants (Google
Now, Microsoft Cortana, Apple Siri, etc.),
Autonomous (“Self-driving”) cars

Big data visualization, Feature elicitation,
Structure discovery, Meaningful
compression

Recommendation engines (Amazon web
service, Netflix, etc.), Customer
segmentation, Target marketing, Filter

Economics (risk prediction, etc.)

• Neural Network (NN)
• Convolutional Neural Network (CNN)
• Deep Belief Networks (DBN)
• Recurrent Neural Network (RNN)

Classification

• Neural Network (NN)

Regression

• Stacked Auto-Encoders (SAE)
• Auto-Associative Neural Network

Dimensionality Reduction

• Deep Belief Networks (DBN)

• Deep Boltzmann Machine (DBM)

Clustering

Density Estimation

Applications

Image classification, Character recognition,
Facial recognition, Surveillance systems

Introduction to Deep Learning

• How Deep Learning Works?

• Deep Learning Computation Procedure

6

Deep Learning Model Setup

• MLP, CNN, RNN, GAN, or Customized

• # Hidden Layers, # Units, Input/Output, …

• Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

• Input: Data, Output: Labels

• Learning  Weights Updates for Cost

Function Minimization

Inference / Testing (Real-World Execution)

• Input: Real-World Input Data

• Output: Interference Results based on

Updated Weights in Deep Neural Networks

Non-Linear Training (Weights Updates) for

Cost Minimization: GD, SGD, Adam, etc.

Input OutputMulti-Layer Perceptron (MLP)

Introduction to Deep Learning

• How Deep Learning Works?

• Deep Learning Computation Procedure

7

Deep Learning Model Setup

• MLP, CNN, RNN, GAN, or Customized

• # Hidden Layers, # Units, Input/Output, …

• Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

• Input: Data, Output: Labels

• Learning  Weights Updates for Cost

Function Minimization

Inference / Testing (Real-World Execution)

• Input: Real-World Input Data

• Output: Interference Results based on

Updated Weights in Deep Neural Networks

INPUT: Data

• One-Dimension Vector

OUTPUT: Labels

• One-Hot Encoding

All weights in units are trained/set (under cost minimization)

We need a lot of training data for generality

(otherwise, we will suffer from overfitting problem).

Input OutputMLP

Introduction to Deep Learning

• How Deep Learning Works?

• Deep Learning Computation Procedure

8

Deep Learning Model Setup

• MLP, CNN, RNN, GAN, or Customized

• # Hidden Layers, # Units, Input/Output, …

• Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

• Input: Data, Output: Labels

• Learning  Weights Updates for Cost

Function Minimization

Inference / Testing (Real-World Execution)

• Input: Real-World Input Data

• Output: Interference Results based on

Updated Weights in Deep Neural Networks

Trained Model

Intelligent

Surveillance

Platforms

INPUT: Real-Time Arrivals OUTPUT: Inference

• Computation Results

based on (i) INPUT and

(ii) trained weights in

units (trained model).

Introduction

• How Deep Learning Works?

• Issue - Overfitting

9

Deep Learning Model Setup

• MLP, CNN, RNN, GAN, or Customized

• # Hidden Layers, # Units, Input/Output, …

• Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

• Input: Data, Output: Labels

• Learning  Weights Updates for Cost

Function Minimization

Inference / Testing (Real-World Execution)

• Input: Real-World Input Data

• Output: Interference Results based on

Updated Weights in Deep Neural Networks

What if we do not have

enough data for training (not

enough to derive

Gaussian/normal distribution)?

Situation becomes

worse when the

model (with

insufficient training

data) accurately fits

on training data.

To Combat the Overfitting

• More training data

• Autoencoding (or variational auto-encoder (VAE))

• Droupout

• Regularization

Introduction

• Two Major Deep Learning Models  CNN vs. RNN

10

Convolutional Neural Network (CNN) Recurrent Neural Network (RNN)

• In conventional neural network architectures, the input

should be one-dimensional vector.

• In many applications, the input should be multi-

dimensional (e.g., 2D for images). Thus, we need

architectures in order to recognize the features in

high-dimensional data.

• Mainly used for visual information learning

• In conventional neural network architectures, there is

no way to introduce the concept of time.

• The time index can be represented as the chain of

neural network models.

• The representative models are LSTM and GRU.

• Mainly used for time-series information learning

Deep Learning: Vision 11

Visual Learning

• Object Recognition

• Style Transfer

• Deblurring and Denoising

• Super-Resolution

• …

Deep Learning: Speech and Languages 12

Speech/Language Learning

• Speech Recognition

• Machine Translation

• Information Retrieval

• …

Deep Learning: Generative Models

• An Emerging Direction, Generative Adversarial Network (GAN)

• Training both of generator and discriminator; and then generates samples which
are similar to the original samples.

13

Performance

Improvements

via Competition

Generators Discriminator

How to Implement Learning Software - Python/TensorFlow Examples

• Quick Start Example

• add is a node which
represents addition operation

• node1: input tensor

• node2: input tensor

• node3: resultant tensor

14

add

node1 node2

node3

Python/TensorFlow Examples 15

• Quick Start Example

Python/TensorFlow Examples

• Example: Placeholder

16

• Regression and Classification

Linear Regression Theory 17

Regression (Examples)

• Exam Score Prediction (Linear Regression)

Classification (Examples)

• Pass/Fail (Binary Classification)
• Letter Grades (Multi-Level Classification)

Deep Neural Network : Linear Regression 18

• Linear model: 𝐻 𝑥 = 𝑊𝑥 + 𝑏

• Which model is the best
among the given three?

1 2 3

10

20

30

y

x

40

x y

1 10

2 15

3 40

Linear Regression 19

• Cost Function (or Loss Function)

• How to fit the line to training data

• The difference between model
values and real measurements:

1 2 3

10

20

30

40

x y

1 10

2 15

3 40

1

𝑚
σ𝑖=1
𝑚 𝐻 𝑥𝑖 − 𝑦𝑖

2

𝐻 𝑥

𝑚: The number of training data

Cost(𝑊,𝑏)=
1

𝑚
σ𝑖=1
𝑚 𝐻 𝑥𝑖 − 𝑦𝑖

2

𝐻 𝑥 = 𝑊𝑥 + 𝑏

y

x

Linear Regression 20

• Cost Function Minimization

• Model: 𝐻 𝑥 = 𝑊𝑥 + 𝑏

• Cost Function: 𝐶𝑜𝑠𝑡 𝑊, 𝑏 =
1

𝑚
σ𝑖=1
𝑚 𝐻 𝑥𝑖 − 𝑦𝑖

2
=

1

𝑚
σ𝑖=1
𝑚 𝑊𝑥𝑖 + 𝑏 − 𝑦𝑖

2

• How to Minimize this Function?  Gradient Descent Method

• Angle  Differentiation

𝑊 ← 𝑊 − 𝛼
𝜕

𝜕𝑊
𝐶𝑜𝑠𝑡(𝑊)

𝛼: Learning rate

Linear Regression

• Learning Rates

• Too large: Overshooting

• Too small: takes too long, stops in the middle

• How can we determine the learning rates?

• Try several learning rates

• Observe the cost function

• Check it goes down in a reasonable rate

21

Overshooting Learn too slow

Linear Regression

• How can we determine the learning rates?

• Try several learning rates

• Observe the cost function

• Check it goes down in a reasonable rate

22

https://www.kaggle.com/residentmario/tuning-your-learning-rate

https://www.kaggle.com/residentmario/tuning-your-learning-rate

Linear Regression

• How can we determine the learning rates?

• Automating choice of learning rate

• Grid Search

• Random Search

• Population Based Training

23

Population Based Training

Linear Regression

• How can we determine the learning rates?

• Automating choice of learning rate

• Grid Search

• Random Search

• Population Based Training

24

Population Based Training

• Training with evolutionary competition

Linear Regression 25

https://deepmind.com/blog/article/how-evolutionary-selection-can-train-more-capable-self-driving-cars

https://deepmind.com/blog/article/how-evolutionary-selection-can-train-more-capable-self-driving-cars

Linear Regression

• Cost Function Minimization

• Gradient Descent Method is only good for convex functions.

26

Linear Regression

• Cost Function Minimization

• Which optimizer performs best?

27

https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2

https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2

Linear Regression

• Multi-Variable Linear Regression

• Model:

• Cost:

28

𝐶𝑜𝑠𝑡 𝑊, 𝑏 =
1

𝑚
෍

𝑖=1

𝑚

𝐻 𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 − 𝑦𝑖

2

𝐻 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝑏

Linear Regression

• Multi-Variable Linear Regression

• Model:

29

𝐻 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝑏

𝑥1 𝑥2… 𝑥𝑛 ∙

𝑤1
𝑤2
…
𝑤𝑛

= 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛

𝐻 𝑋 = 𝑋𝑊 + 𝑏

𝑋 𝑊

𝐻 𝑋 = 𝑋𝑊𝑇 + 𝑏

when 𝑊 = 𝑤1 𝑤2… 𝑤𝑛

• TensorFlow

• Linear Regression

• Keras

• Linear Regression

Linear Regression Implementation (TensorFlow) 30

Linear Regression Implementation (TensorFlow) 31

X YW, b
[1,1]
[2,2]
[3,3]

[10]
[20]
[30]

Model, Cost, Train

2 1

Linear Regression Implementation (TensorFlow) 32

Open source Machine Learning Library 33

Modified from Source: https://www.svds.com/getting-started-deep-learning/

Languages
Tutorials and

training
materials

CNN
modeling
capability

RNN
modeling
capability

Architecture:
easy-to-use

and modular
front end

Speed
Multiple GPU

support
Keras

compatible

Theano Python, C++ ++ ++ ++ + ++ + +

Tensor Flow
Python, C++,

Java
+++ +++ ++ +++ ++ ++ +

Torch Lua + +++ ++ ++ +++ ++

Pytorch Python + +++ ++ ++ +++ ++

Cafee C++ + ++ + + +

MXNet
R, Python,
Julia, Scala

++ ++ + ++ ++ +++

Neon Python + ++ + + ++ +

CNTK C++ + + +++ + ++ +

• TensorFlow is an open source software library for numerical computation
using data flow graphs

• TensorFlow supports popular programming languages such as Python,
C++, Java

• TensorFlow was originally developed by researchers and engineers
working on the Google Brain Team within Google's Machine Intelligence
research organization for the purposes of conducting machine learning and
deep neural networks research, but the system is general enough to be
applicable in a wide variety of other domains as well

Tensorflow 34

Installation Procedures

35

• Installing Anaconda Environment on Window

Installing Anaconda on Window 36

Download the Anaconda 64-Bit Graphical Installer from the following link

https://www.anaconda.com/products/individual

https://www.anaconda.com/products/individual

Installing Anaconda on Window 37

1 2

3 4

• After finishing Anaconda installation, open the “Anaconda Commend
Prompt” to create the virtual environment

Constructing the Anaconda Virtual Environment 38

Start menu, search for and open “Anaconda Prompt”

• Type the following commands in the Anaconda Commend Prompt

Installing Tensorflow 39

Choose a name for your TensorFlow environment, such as “tf”.

conda create -n tf tensorflow==1.15

conda activate tf

Activate the “tf” environment

https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

• Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

Installing Jupyter Notebook with Anaconda 40

conda install jupyter

https://jupyter.org/

The Jupyter Notebook is an open-source web
application that allows you to create and share
documents that contain live code, equations,
visualizations and narrative text. Uses include:
data cleaning and transformation, numerical
simulation, statistical modeling, data visualization,
machine learning, and much more.

https://jupyter.org/

• Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

Installing Keras 41

conda install keras

https://keras.io/

https://keras.io/

• Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

Installing Numpy 42

conda install numpy

https://numpy.org/pai

https://numpy.org/

• Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

Installing Matplotlib 43

conda install matplotlib

https://matplotlib.org/

https://matplotlib.org/

• Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

Installing scikit-learn 44

conda install scikit-learn

https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html

Opening Jupyter Notebook

45

• Start menu, search for and open “Anaconda Prompt”

• Activate the “tf” environment

Opening Jupyter Notebook 46

• Start menu, search for and open “Anaconda Prompt”

• Activate the “tf” environment

Opening Jupyter Notebook 47

• Type jupyter notebook

Opening Jupyter Notebook 48

Jupyter Notebook 49

To upload files Create new folders and files

Creating new folder and file in Jupyter 50

1 2
3

4

5 6

Create new folder

Sort the folders

Click “Untitled Folder”
Click “Rename”

Enter into the “tensorflow” folder

Rename the folder name as
“tensorflow”

Creating new folder and file in Jupyter 51

1 2

3

Create new python 3 file

“Untitled” file will automatically appear and then rename the file name "Untitled”.

Rename the file name “Untitled” into “first project”

Jupyter Notebook project file 52

Run the cells (ctrl + enter)Add new cell

Save File

Stop Running Restart Kernal

Create New File

First Tensorflow Project 53

First Tensorflow Project 54

55

Q and A 56

57

