Choong Seon Hong

cshong@khu.ac.kr
Department of Computer Science and Engineering
Kyung Hee University, Korea

KHu

mailto:cshong@khu.ac.kr

What is Al Networking

* It is a networking technology for end-to-end connectivity and networking
management technology using Al learning algorithms such as :
* Supervised Learning

* Unsupervised Learning
* Reinforcement Learning

* Topics to be covered in the class
* Edge Computing
* Federated Learning
Resource Management
D2D Communication Networks
UAV networks
Energy Management
Security Issues
* Meta-learning and Transfer Learning

KHu

Lecture Schedule and Evaluation

[Schedule]
ek Tcomems
1st Week Introduction to Al Networking

2nd Week Networking and Future Internet

3rd Week Mobile Networking(LTE & 5G)

4th Week Machine Learning based Edge Computing

5th Week Federated Learning and Democratized Learning

6th Week Al based Network Resource Management 1

7th Week Al based Network Resource Management 2

8th Week Al based D2D Communication Networks

9th Week Mid-term Exam

10th Week UAV-Assisted Wireless Networks

11th Week Al based Energy Management

12th Week Vehicular Edge Networking

13th Week Next Generation Security based on Machine Learning
14th Week Meta-Learning based Networking Architecture

15th Week 6G & Al

16th Week Term Project Presentations

[Evaluation]

Presentation & Project 40%

Presence 10%

KHu

The Evolution of Artificial Intelligence (Al)

1950 1950 1951 1955 1959 1961 1963 1964
Alan Turing Isaac Asimov First Al based First self learning MIT Al Lab First Robot is inducted First Machine First demonstration of
Proposes the proposes the Thfee Program was game playing is setup into GM’s assembly Learning program an Al program which
Turing Test Laws of Robotics written program is written production line is written understand Natural
Language
1986 1969
1997 . .1990 Learning 1980 1974 1969 Stanford Research 1965
IBMs Deep Blue beats Probabilistic models of . osaonations by LISP based machines First rule based Al First autonomous Institute (SRI) First Al based
Gary Kasparov at sequences back-propagating error are developed and expert system for vehicle is created at thﬁemonstrates the first Chat-bot
Chess (Yoshua Bengio) (Backpropagation) marketed medical diagnostics ~ Stanford Al LAB locomotive and intelligent (ELLZA) was
. [G. Hinton] robot (Shakey) created
g ! ,:".\:\
2011
C 19|9? | Fi Elgg'9 LAl DAPRfQQ[Ll d 2005 2009 2010 IBM Wz?ll beat Personal
N onl\/ﬁl ut\llt/)nr?(i Irst mﬁfuona the fir tlnhg)”ell{]cees Al based Google builds Narrative Science’s] a soré €als assistants like Siri,
. teu(;a o?b OY nsn d mac mesd fer Ast Cn mougs recommendation Self Driving Car Al demonstrates heopa.r y Google Now and
intro ufec y Ya e?ﬂ?ﬁilr?eb at ° Vu ﬁ. (I) engines ability to write champions Cortana become
etun a ehicles reports mainstream

e e o e© o o

Turing Award
Pl 2015

By 2019 2018 2017 - 2016 2016, Elon Musk and others
- OpenAl 5 AlphaGo Zero which NVIDIA announces Google’s announce a $1B non
2020) g I (Defeat the world’s OpenAl 5 learns from scratch supercomputer for Deepmind AlphaGo profit open source
OpenAl's \ % 2\ top Dota 2 team) (Dota 2) Deep Learning and ~ defeats Go's initiative, OPEN Al to
TR champions develop friendly Al

GPT-3 _, Al
— 0 @& 0@

l(l-l U Modified from Source: https://twitter.com/mikequindazzi/status/835589969909424130

Deep Learning Taxonomy

Deep
Learning

KHu

Supervised
learning

] Unsupervised
Learning

l Reinforcement

learning

o

o

o

Classification

Neural Network (NN)

Convolutional Neural Network (CNN)
Deep Belief Networks (DBN)
Recurrent Neural Network (RNN)

Regression
Neural Network (NN)

Dimensionality Reduction

Stacked Auto-Encoders (SAE)
Auto-Associative Neural Network

Clustering
Deep Belief Networks (DBN)

Density Estimation
Deep Boltzmann Machine (DBM)

Reinforcement Learning
Deep Q-learning
Double Q-learning
Prioritized experience replay

Applications

Image classification, Character recognition,
Facial recognition, Surveillance systems

Advertising and business intelligence
(Google ads, etc.), Weather forecasting,
Market forecasting, Political campaigns

Big data visualization, Feature elicitation,
Structure discovery, Meaningful
compression

Recommendation engines (Amazon web
service, Netflix, etc.), Customer
segmentation, Target marketing, Filter

Economics (risk prediction, etc.)

Real-time decisions, Game Artificial
Intelligence, Learning tasks, Skill
acquisition, Personal assistants (Google
Now, Microsoft Cortana, Apple Siri, etc.),
Autonomous (“Self-driving”) cars

Modified from source: Fadlullah, Zubair, et al. "State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems." IEEE Communications Surveys & Tutorials (2017).

Introduction to Deep Learning

. . Input Multi-Layer Perceptron (MLP Out ut
* Deep Learning Computation Procedure e / ptron (MLP) b

* How Deep Learning Works?

Deep Learning Model Setup

« MLP, CNN, RNN, GAN, or Customized

« # Hidden Layers, # Units, Input/Output, ...
« Cost Function / Optimizer Selection

/.wr.«\\v
/ g
4\)\}“\(4.”":[\ ‘4\\ «4,/'11\ “‘ ,.’/',‘
.‘:~0<.: ‘ .’ ‘ ‘
"m:\ /’@(7::*:\');0“'

N o o
AW \\\H///\\\

-

,_________________________________
RN IR R R N X

Non-Linear Training (Weights Updates) for
Cost Minimization: GD, SGD, Adam, etc.

3 hidden neurons 6 hidden neurons) 20 hidden neurons

KHu

Introduction to Deep Learning

* How Deep Learning Works?

* Deep Learning Computation Procedure

~ -

Training (with Large-Scale Dataset)

* Input: Data, Output: Labels

« Learning - Weights Updates for Cost
Function Minimization

~ -

KHu

All weights in units are trained/set (under cost minimization)

Input MLP ﬁ Output
| M Y

Ty
‘//é}é\\v /@\5 o e Q\

\ lI
/\\ M‘ll:\ R0 u 11 4\\ M' 1

A V \Y/
'/0;7 O @ ‘ \\ww
."«"\{ Y7 .w"‘.‘&i‘ 430‘9‘\"“' "\ «5

R MR LN 0 &K
L\ g/ ,0“ DR\ A{/A\
\"in‘\«t“' \’l m\\ ‘ Vlr,;m\\v “W

\ ./m m R N
4 /

o —————— —

;m\
\

o - —

4

1
-

1

1

\

| P ———

INPUT: Data OUTPUT: Labels
* One-Dimension Vector * One-Hot Encoding

We need a lot of training data for generality

(otherwise, we will suffer from overfitting problem).

Introduction to Deep Learning

* How Deep Learning Works? d Model
Trained Mode

* Deep Learning Computation Procedure

Intelligent
' Surveillance
Platforms
@ INPUT: Real-Time Arrivals OUTPUT: Inference
Inference / Testing (Real-World Execution) « Computation Results
* Input: Real-World Input Data based on (i) INPUT and
« Output: Interference Results based on (ii) trained weights in
Updated Weights in Deep Neural Networks units (trained model).

KHu

Introduction

* How Deep Learning Works?

e |ssue - Overfitting

KHu

Deep Learning Model Setup
« MLP, CNN, RNN, GAN, or Custon®
« # Hidden Layers, # Units, Input/Output, ...

- Cost Function / Optimizer Selection 9

—

Training (with Large-Scale Dataset)

* Input: Data, Output: Labels

 Learning - Weights Updates for Cost
Function Minimization

Inference / Testing (Real-World Execution)

* Input: Real-World Input Data
« Output: Interference Results based on
Updated Weights in Deep Neural Networks

What'if we do not have

enough data for training (not
enough to derive ™~

Gaussian/r\mrmal distribution

)?

Situation becomes
worse when the
model (with
insufficient training
data) accurately fits
on training data.

To Combat the Overfitting

* More training data

 Autoencoding (or variational auto-encoder (VAE))
* Droupout

* Regularization

Introduction

Convolutional Neural Network (CNN)

Input Convolutional ~ Pooling Fully Connected Output
Layer Layer Layer Layer La er
— I_I_‘_

H

* Two Major Deep Learning Models = CNN vs. RNN

Recurrent Neural Network (RNN)

Unfold . . .
Cj@@ y V\m}vl

In conventional neural network architectures, the input
should be one-dimensional vector.

In many applications, the input should be multi-
dimensional (e.g., 2D for images). Thus, we need
architectures in order to recognize the features in
high-dimensional data.

Mainly used for visual information learning

* In conventional neural network architectures, there is
no way to introduce the concept of time.

« The time index can be represented as the chain of
neural network models.

« The representative models are LSTM and GRU.

« Mainly used for time-series information learning

KHu

Deep Learning: Vision

Visual Learning

* Object Recognition

Style Transfer

Deblurring and Denoising
Super-Resolution

KHu

Deep Learning: Speech and Languages

Speech/Language Learning
« Speech Recognition
 Machine Translation
* Information Retrieval

KHu

Deep Learning: Generative Models

* An Emerging Direction, Generative Adversarial Network (GAN)

* Training both of generator and discriminator; and then generates samples which
are similar to the original samples.

Discriminator

[J
Performance
Improvements
via Competition

KHu

How to Implement Learning Software - Python/TensorFlow Examples

* Quick Start Example
Add

nodel node2

In [1]: import tensorflow as tf
m #(Create nodes in computation graph

nodel = tf.constant(3, dtype=tf.int32)
node? = tf.constant(5, dtype=tf.int32)
node3 noded = tf.add(nodel, node2)

#(reate session object
sess = tf.Session()

print(“nodel + node2 = ", sess.run(node3))
H ° #close the L O}
* add is a node which cese.close()
represents addition operation nodel + node2 - 8

* nodel: input tensor
* node2: input tensor

* node3: resultant tensor

KHu

Python /TensorFlow Examples

* Quick Start Example
Add Add 2

I import tensorflow as tf 1 import tensorflow as tf

3 #Create nodes in computation graph 3 #Create nodes in computation graph

1 nodel = tf.constant(3, dtype=tf.int32) 1 nodel = tf.constant(3, dtype=tf.int32)
5 node2 = tf.constant(5, dtype=tf.int32) 5 node2 = tf.constant(5, dtype=stf.int32)

node3 = tf.add(nodel, node2) & node3 = tf.add(nodel, nodel)
#Create session object & #Create session object
3 sess = tf.Session() 9 with tf.Session() as sess:
18 print("nodel + node2 = ", sess.run{node3)) 1€ print(“"nodel + node2 = ", sess.run(node3))
11 #close the session
17 sess.close() nodel + node2 = &

nhodel + node2 = &

KHu

Python /TensorFlow Examples

* Example: Placeholder

import tensorflow as tf

#Create nodes in computation graph

a = tf.placeholder(tf.int32, shape=(3,1))
b = tf.placeholder(tf.int32, shape=(1,3))
c = tf.matmul(a,b)

#Run computation graph
with tf.Session() as sess:
print(sess.run{c, feed dict={a:[[3],[2],[1]1], b:[[1,2,3]11}))

oo L Y o S TR B R Wy T

=

—
1 1 —
= 2 L
[B -
Lt on LD
[Iy Ty
[

KHu

Linear Regression Theory

* Regression and Classification
Regression (Examples) Classification (Examples)

Exam Score Prediction (Linear Regression) « Pass/Fail (Binary Classification)
Letter Grades (Multi-Level Classification)

dog hat

mug

gmg FaM S ad o
¥ S . h- 'h. "ﬂ!
BT - NIl an
AR i

KHu

Deep Neural Network : Linear Regression

KHu

* Linear model: H(x) = Wx + b

* Which model is the best
among the given three?

AY
40
®
30
20
®
10 A
2 15
3 40
/ >
/ 1 / 2 3 X

KHu

Linear Regression

* Cost Function (or Loss Function)
* How to fit the line to training data

* The difference between model
values and real measurements:

m: The number of training data
1 m (- e\ 2
—Xiza(H(x') —¥')
o Ai=1 y

Hx)=Wx+b

Cost(W,b)=
— Y (H(x) = y1)°

40

30

20

10

H(x)

Linear Regression

* Cost Function Minimization
* Model: H(x) =Wx + b

* Cost Function: Cost(W,b) = —Z L(H(xY) —y) m(Wxt+b—y)

* How to Minimize this Function? = Gradient Descent Method
* Angle = Differentiation &

- Weight \ II'/ /
; NS
W« W —a——_Cost(W) / //,'

ow

Gradient

kK = Minimum Cost
A

Derivative of Cost

a: Learning rate >

KHu

Linear Regression

* Learning Rates
* Too large: Overshooting
* Too small: takes too long, stops in the middle

* How can we determine the learning rates?

* Try several learning rates
* Observe the cost function

* Check it goes down in a reasonable rate

Learn too slow

4 Overshooting 4

|<|.|U > >

Linear Regression
* How can we determine the learning rates?

* Try several learning rates
* Observe the cost function

* Check it goes down in a reasonable rate

learning rate is too
20 - low, loss function
doesn't improve

15 4

learning rate is too high,
begins to diverge

Loss

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 4 :
|
|
|
|

05 A
|

optimal learning rate range

00 -

T T T
10-# 10-3 102
Learning rate

|(|'|U https://www.kaggle.com/residentmario/tuning-your-learning-rate

https://www.kaggle.com/residentmario/tuning-your-learning-rate

Linear Regression
* How can we determine the learning rates?

* Automating choice of learning rate
* Grid Search
* Random Search

* Population Based Training

IDerf:élmance Q — E=
Hyperparameters (7). O.. O O
Model D,D ,D _____________ ,[]
P> exploit
y — — I'1:I == =
: ., = O. |O| Owwe-Q. O
(o) @) ¢ o o o é Oo [] COUUUU) .,[] [] U AAAAA)D
I o o) | @ ~—
o o ® o o) o o ! =
' : Population Based Training
Grid Search Random Search

KHu

Linear Regression
* How can we determine the learning rates?

* Automating choice of learning rate
* Grid Search
* Random Search

* Population Based Training

IDerf:élmance Q — E=
Hyperparameters (7). O.. O O
Model D,D ,D _____________ ,[]
P> exploit
y — — I'1:I == =
: ., = O. |O| Owwe-Q. O
(o) @) ¢ o o o é Oo [] COUUUU) .,[] [] U AAAAA)D
I o o) | @ ~—
o o ® o o) o o ! =
' : Population Based Training
Grid Search Random Search

KHu

Linear Regression

* Training with evolutionary competition

)
O

)
L

KHu

Fo |

.

g

B

ES

i O

| 2

®

INEI

D)

-LL
-rr

-

1

L
r

o

s

J
]

G
E
0>

O

-

1D

| o |

|/A|

N

https://deepmind.com/blog/article/how-evolutionary-selection-can-train-more-capable-self-driving-cars

https://deepmind.com/blog/article/how-evolutionary-selection-can-train-more-capable-self-driving-cars

Linear Regression

e Cost Function Minimization

* Gradient Descent Method is only good for convex functions.

A local
cost minimum

/

Global
cost minimum

J(W)

KHu

KHu

Linear Regression

e Cost Function Minimization

* Which optimizer performs best?

Validation accuracy over time for different optimizers

0.9

0.8

0.7

0.6

0.5

0.4

Validation accuracy

0.3

0.2

0.1

0 200 400 600 800 1000 1200 1400 1600

Time in seconds

https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2

1800

2000

——Adam
——Adagrad
——Momentum
GD
——Adadelta
RMSProp

https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2

Linear Regression

* Multi-Variable Linear Regression
* Model:

H(x{,%5, ..., X5) = WiX{ + WyXy + - +wyx,, + b

e Cost:

1 m .. . 2
Cost(W,b) = —z (H(x{,xé, vy Xp) — Y
m =1

KHu

Linear Regression

* Multi-Variable Linear Regression
* Model:

H(xq,%5, o, Xp) = WX +Woxo + - +wpx, +b | HX) =XW + b

> | HX)=XWT +b

when W = (W1 Wz ... Wy)

KHu

Linear Regression Implementation (TensorFlow)

* TensorFlow

 Linear Regression

e Keras

* Linear Regression

KHu

Linear Regression Implementation (TensorFlow)

In [1]: 1 import tensorflow as tf # Import the tensorflow Lib n X Y n

In [2]: 1 x data = [[1,1],[2,2],[3,3]] # Input data [1,1] [10]
2 y data = [[16],[2@],[3@]] # Label data
[2,2] [20]
In [3]: 1 X = tf.placeholder(tf.float32, shape=[None,2]) #Construct the placeholder for input4:3,3] [3()]
2 Y = tf.placeholder(tf.float32, shape=[None,l]) #Construct the placeholder for output

In [4]: 1 W=tf.Variable(tf.random_normal([2,1])) #Construct the Weight metrix
2 b=tf.Variable(tf.random_normal([1l])) #Construct the bias vector

In [5]: I model = tf.matmul(X,W)+b # Construct simple prediction model .
cost = tf.reduce mean(tf.square(model-Y)) #Define the loss function MOdeI; COSt; Train
train = tf.train.GradientDescentOptimizer(®.61) .minimize(cost) # Define the optimizer

L Pk

In [6]: with tf.%ession() as sess:

2 sess.run(tf.global variables initializer())

3 #raining
4 for step in range(2081): i i
5 c, W, b, = sess.run([cost, W, b, train], Ffeed dict={X: x data, Y: y data})
6 print(step, ¢, W_, b) S ———
7 #lesting

- |

print("Testing”,sess.run{model, feed dict={X: [[4,4]]}))

I

KHu

Linear Regression Implementation (TensorFlow)

[5.109964]] [©.81917489]

1992 5.258784e-05 [[4.881712]
[5.189975]] [©.©1912481]

1993 5.231946e-85 [[4.881723]
[5.189986]] [©.01907484]

1994 5.2037543e-05 [[4.881734]
[5.189997]] [©.61982499]

1995 5.1763218e-85 [[4.881745]
[5.110608]] [©.81897525]

1996 5.15681138e-05 [[4.881756]
[5.1108187]] [©.91892565]

1997 5.123555e-95 [[4.881767]
[5.1108297]] [2.01887617]

1998 5.8959286e-05 [[4.8817773]
[5.11084]] [©.91882678]

1999 5.8692397e-085 [[4.881788]
[5.1128587]] [@.01877754]

2000 5.8433042e-05 [[4.8817983]
[5.110861]] [@.91872844]

Testing [[39.986168]]

KHu

Open source Machine Learning Library

Architecture:

Tutor!a!s and CNN. RNN. easy-to-use Multiple GPU Keras
Languages training modeling modeling Speed .
materials capabilit capabilit Il support TPl G
P ¥ P ¥ front end
Theano Python, C++ ++ ++ ++ + ++ + +
Python, C++,
Tensor Flow ++ ++ ++ +
Java
Torch Lua ++ ++ ++
Pytorch Python ++ ++ ++
Cafee C++ + ++ + + +
R, Python,
MXNet . Y ++ ++ + ++ ++
Julia, Scala
Neon Python + ++ + + ++ +
CNTK C++ + + + ++ +

U

Modified from Source:

https://www.svds.com/getting-started-deep-learning/

* TensorFlow is an open source software library for numerical computation
using data flow graphs

Tensorflow

* TensorFlow supports popular programming languages such as Python,
C++, Java

* TensorFlow was originally developed by researchers and engineers
working on the Google Brain Team within Google's Machine Intelligence

research organization for the purposes of
, but the system is general enough to be

applicable in a wide variety of other domains as well

KHu

KHu

Installation Procedures

35

Installing Anaconda on Window

* Installing Anaconda Environment on Window
Download the Anaconda 64-Bit Graphical Installer from the following link

https://www.anaconda.com/products/individual

{) ANACONDA

Anaconda Installers

Windows &8 MacOS & Linux &

64-Bit Graphical Installer (466 MB) 64-Bit Graphical Installer (462 MB) 64-Bit (x86) Installer (550 MB)

32-Bit Graphical Installer (397 MB) 64-Bit Command Line Installer (454 MB) 64-Bit (Power8 and Power9) Installer (290
MB)

KHu

https://www.anaconda.com/products/individual

Installing Anaconda on Window

D Anaconda3 5.0.0 (64-bit) Setup == O Anaconda3 5.0.0 (64-bit) Setup —Le
License Agreement
we'c"?me to Anaconda3 5.0.0 .) ANACONDA Please review the license terms before installing Anaconda3 5.0.0
(64-bit) Setup (64-bit).
Q Setup will guide you through the installation of Anaconda3 Press Page Down to see the rest of the agreement.
5.0.0 (64-bit).
| -~
ANACONDA Itis recommended that you dose all other applications Znaconda End User License Agreement 3
before starting Setup. This will make it possible to update [
relevant system files without having to reboot your
computer. Copyright 2015, Anaconda, Inc.
Click Next to continue. Al rights reserved under the 3-clause BSD License:
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

If you accept the terms of the agreement, dlick I Agree to continue. You must accept the
agreement to install Anaconda3 5.0.0 (64-bit).

[Next >][Cancel [< Back][1 Agree][Cancel

2 Anaconda3 5.0.0 (64-bit) Setup =Ll

O Anaconda3 5.0.0 (64-bit) Setup =REE X

Advanced Installation Options
J ANACONDA customize how Anaconda integrates with Windows

Installation Complete
.) ANACONDA Setup was completed successfully.

Advanced Options
2 ted
["] Add Anaconda to my PATH environment variable ‘ omplet

Not recommended. Tnstead, open Anaconda with the Windows Start S ——
menu and select "Anaconda (64-bit)". This "add to PATH" option makes

Anaconda get found before previously installed software, but may oW aeies

cause problems requiring you to uninstall and reinstall Anaconda.

[V Register Anaconda as my default Python 3.6

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.6 on the system.

Anaconda, Inc,

<Back || sl | [cancd | |

KHu

* After finishing Anaconda installation, open the “Anaconda Commend
Prompt” to create the virtual environment

Constructing the Anaconda Virtual Environment

All Apps Documents Web More w

Best match
i Anaconda Prompt (tensorflow) 5
App
Apps
Anaconda Powershell Prompt (Anaconda3)
B Anaconda Prompt (Anaconda3) > A

B Anaconda Powershell Prompt

(Anaconda3)
T Open

#) Anaconda Navigator (Anaconda3 >
') 9 () B Run as Administrator

Search the web -
Q Run ISE as Administrator
AR ana - see web results > B windows Powershell ISE

Documents (4+)

Start menu, search for and open “Anaconda Prompt”

KHu

Installing Tensorflow

* Type the following commands in the Anaconda Commend Prompt

Choose a name for your TensorFlow environment, such as “tf”.

conda create -n tftensorflow==1.15

Activate the “tf” environment

conda activate tf

B Anaconda Prompt (Anaconda3) — O x

S R R R
SR R

A T T A R
B e
B
A T T A R

tion: done

nvironment, use

. use

https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

KHu

https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

Installing Jupyter Notebook with Anaconda

* Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

ZJupyter Lorenz Differential Equations s A
File Edit View Ingert Cell Kemel Help Python 3 O
Conda inSta” jupyter B+ @B 4+ % > B C Code # Cell Toolbar: | Nene :
ece
o -)) = | In this Notebook we explora the Lorenz system of differential equations:
B + xa B + v »r 1 %im_x)
Y=px—y-xz
i=-fz+xy
This Is one of the classic systems in non-linear differential equations. It exhibits a range of
- J u py t er :;.—::;:_D:hn:u:::;: Lnfspa::melfrs (o, ﬁl_—pla‘:::aﬂa?‘, I‘r.xcluuing whal.nrerl:‘r:;::\f:: chaotic
atmospheric convection in 1963,
Welcome to the In [7]: interact(Lorenz, W=fixed(10), angle=(0.,360.),
S - o=(0.0,50.0),B=(0.,5), p=(0.0,50.0))
angle 308.2
. . WARNING | 12
The Jupyter Notebook is an open-source web oty o o e .

application that allows you to create and share B)
documents that contain live code, equations, ' "

Run some Python (

visualizations and narrative text. Uses include: Tonnvesoa el

1. Click on the ceil 10 5¢

data cleaning and transformation, numerical —
simulation, statistical modeling, data visualization, e
machine learning, and much more. N

isport numpy as np
import matplotlib

https://jupyter.org/

KHu

https://jupyter.org/

Installing Keras

* Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

condainstall keras

tensorflow keras
tensorflow.keras layers

vision_model keras.applications.ResNet50()

Deep learning for humans.

Keras is an APl designed for human beings, not machines. T et ot ibr e (AR o OOET) (vite0 gkt
Keras follows best practices for reducing cognitive load: it FEHISE NAR00 = MISER:IoIRCISAL kN ToRa thanee)

offers consistent & simple APIs, it minimizes the number of e e e e e LTl

user actions required for common use cases, and it provides ol "“,;;;;;;;éd quggg‘;gf;;m" npwc)

clear & actionable error messages. It also has extensive

documentation and developer guides. e e el Lot Sl oo it

video_qa_model - keras.Model s [video_input, question_input],
i1ts output)

https://keras.io/

KHu

https://keras.io/

Installing Numpy

* Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

conda install numpy

4
’Q

KHu

POWERFUL N-DIMENSIONAL ARRAYS

Fast and versatile, the NumPy vectorization,

indexing, and broadcasting concepts are the de-

facto standards of array computing today.

PERFORMANT

The core of NumPy is well-optimized C code.
Enjoy the flexibility of Python with the speed of
compiled code.

NumPy

NUMERICAL COMPUTING TOOLS

MumPy offers comprehensive mathematical
functions, random number generators, linear

algebra routines, Fourier transforms, and more.

EASY TO USE

MumPy’s high level syntax makes it accessible
and productive for programmers from any
background or experience level.

N

https://numpy.org/pai

“.

INTEROPERABLE

MumPy supports a wide range of hardware and
computing platforms, and plays well with
distributed, GPU, and sparse array libraries.

OPEN SOURCE

Distributed under a liberal BSD license, NumPy
is developed and maintained publicly on GitHub
by a vibrant, responsive, and diverse community.

https://numpy.org/

* Type the following commend in the Anaconda Commend Prompt (in the
“tf” environment)

conda install matplotlib

Installing Matplotlib

Version 3.3.1

Matplotlib: Visualization with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

e A e

|(|.|U https://matplotlib.org/

matpl*

https://matplotlib.org/

KHu

Installing scikit-learn

* Type the following commend in the Anaconda Commend Prompt (in the

“tf” environment)

conda install scikit-learn

scikit-learn

Machine Learning in Python

Getting Started Release Highlights for 0.23 ~ GitHub

Classification
Identifying which category an object belongs to.
Applications: Spam detection, image recognition.

Algorithms: SVM, nearest neighbors, random forest,
and more...

* Simple and efficient tools for predictive data analysis

® Accessible to everybody, and reusable in various contexts
® Built on NumPy, SciPy, and matplotlib

® Open source, commercially usable - BSD license

Regression

Predicting a continuous-valued attribute associated
with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors, random forest,

and more...

Boosted Decision Tree Regressi

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping
experiment outcomes

Algorithms: k-Means, spectral clustering, mean-
shift, and more...

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html

KHu

Opening Jupyter Notebook

45

Opening Jupyter Notebook

* Start menu, search for and open “Anaconda Prompt”

e Activate the “tf” environment

All Apps Documents Web More w a4
Best match
B Anaconda Prompt (Anaconda3) = O *
. Anaconda Prompt (tensorflow) 5
App
Apps W

Anaconda Powershell Prompt (Anaconda3)
B Anaconda Prompt (Anaconda3) ? App
B Anaconda Powershell Prompt
(Anaconda3)

o

Open
Z) Anaconda Navigator (Anaconda3) >

Run as Administrator
Search the web

]

Run ISE as Administrator

/O ana - See web results >

(™)

Windows PowerShell ISE

Documents (4+)

KHu

Opening Jupyter Notebook

* Start menu, search for and open “Anaconda Prompt”

e Activate the “tf” environment

All Apps Documents Web More w a4
Best match
B Anaconda Prompt (Anaconda3) = O *
. Anaconda Prompt (tensorflow) N
App
Apps 1

Anaconda Powershell Prompt (Anaconda3)
B Anaconda Prompt (Anaconda3) > ADD
B Anaconda Powershell Prompt
(Anaconda3)
7 open

£ Anaconda Navigator (Anaconda3 B I
') 9 () B Run as Administrator ‘

Search the web -
Q Run ISE as Administrator

/O ana - See web results > >.]

& windows PowerShell ISE

Documents (4+)

KHu

Opening Jupyter Notebook

* Type Jupyter notebook

B Anaconda Prempt (Anaconda3) - conda install jupyter

R R
B e e S R R R E e R e S R S R R iR R R]
B e S S R R E R R R e E R e SRR R S R iR R]
B e S S R R E R R R e E R e SRR R S R iR R]
B e S S R R E R R R e E R e SRR R S R iR R]

" Jupyter ouit | Logaut

Files RUNAing Clusters

Select items to perform actions on them

Upload | New~= £
Name & Last Madified File size

18 days ago

9 days ago

T months ago

T months ago

4 months ago

T months ago

T months ago

KHu

Jupyter Notebook

To upload files Create new folders and files

/

@ localhost:3888/tree
: Jupyter Quit Logou
Files Running Clusters
eww || &

Select items to perform actions on them. Upload || N
Jo |~ i Name ¥ Last Modified Filz size
[J [3D Objects 18 days ago
[J [anaconda3 9 days ago
[[android_keystore 7 months ago
0 [AndroidStudioProjects 7 months ago
O O ansel 4 months ago
[J 0[O apk_output 7 months ago
[J [ApkProjects 7 months ago
[J O AawesomeProject 7 months ago

KHu

Creating new folder and file in Jupyter

Sort the folders e
0 Upload o e Files Running Clusters
_ Files Running

] MNotebook: Clusters
Mame % e Fename || Move n
{ Python 3 i Select items to perform actions on them. Upload | New- &
T - o Rename selected /
Other oo -~ | =/ Name Last Modified 4 File size
Text File r - -
[0 OO Untitled Folder seconds ago [] [Downloads
Folder o _
[J O Downloads 2 minutes ago
Terminal I Untitled Folder

¥

Create new folder Click “Untitled Folder”

Rename directory CIICk ”Rename”

Enter a new directory name

Rename the folder name as | tenseton |
I{4 124
tensorflow -

eluul. PRl L o L T L L e S L i GF”ES Runnlng C|LI5TEFS

(o0 ~ Wi Select items to perform actions on them.
(] 0[O Downloads » (Jo -~ Wm/ tensorflow
(1] O tensorflow =

|(|'|U Enter into the “tensorflow” folder

The notehook list is empty.

Creating new folder and file in Jupyter

0 e@ localhost:8888/notebooks/tensorflow/Untitled.ipynb?kernel_name=python3

Upload o : Jupyter Untitled Last checkpoint: a few seconds ago (unsaved changes)

Hotebook: |
e e File Edit View Insert Cell Kernel Widgets Help
Python 3 i
B+ s & B 4+ ¥ PR B C MW Cod v | =

Other Create a ne
Text File
Folder I In []: 1
Terminal

“Untitled” file will automatically appear and then rename the file name "Untitled”.
Create new python 3 file

Rename Notebook

Enter a new notebook name:

first project |

Cancel Rename

Rename the file name “Untitled” into “first project”

KHu

Jupyter Notebook project file

Add new cell Run the cells (ctrl + enter) Stop Running Restart Kernal

ﬁ Logout

Trusted | Python 3 O

: jupyter first project Last Checkpoin/7 minutes ago (autosave

File Edit View Insert Cell

+ %= @A B 4+ ¥ PRun B CP Code v B

I In []:

Save File

Create New File

KHu

First Tensorflow Project

File Edit View Insert Cell Kernel Widgets Help Trustec | Python 3 O
+ = A B 4 pRun B C W Code v =
In [1]: 1 import tensorflow as tf # Import the tensorflow Lib
In [2]: 1 x data = [[1,11,[2,2],[3,3]] # Input data

[

y_data [[18],[2@],[3@]] # Label data

In [3]:

o
]

= tf.placeholder(tf.float32, shape=[Neone,2]) #Construct the placeholder for inputs
= tf.placeholder(tf.float32, shape=[None,l]) #Construct the placeholder for output

i
==
I

In [4]: 1 W=tf.Variable(tf.random_normal([2,1])) #Construct the Weight metrix
b=tf.Variable(tf.random_normal([1])) #Construct the bias vector

[

In [5]: 1 model = tf.matmul(X,W)+b # Construct simple prediction model
cost = tf.reduce mean(tf.square(model-Y)) #Define the loss function
train = tf.train.GradientDescentOptimizer(8.081).minimize(cost) # Define the optimizer

L B |

In [6]: with tf.Session() as sess:

sess.run(tf.global variables initializer())

#Training

for step in range(2001):
c, W, b_, _ = sess.run([cost, W, b, train], feed_ dict={X: x_data, ¥Y: y_data})
print(step, ¢, W , b)

#Testing

print("Testing”,sess.run{model, feed dict={X: [[4,4]]}))

L Pl

{9 I -

]

(]

KHU

First Tensorflow Project

Traln = Tr.Traln.uaragdlentuescentupiimlizeri{d.vl).minimlze{ CO5T) # LUerine TtTne oprTimiier

LA

In [6]: with tf.Session() as sess:

sess.run{tf.global variables initializer())

#Training

for step in range(20801):
c, W, b, = sess.run([cost, W, b, train], feed dict={X: x data, ¥: y_data})
print(step, c, W, b)

#Testing

print("Testing”,sess.run(model, feed dict={X: [[4,4]]}))

1 [5.169964]] [©.081917489] -
1992 5.258784e-05 [[4.881712]
[5.109975]] [@.01912481]
1993 5.231946e-85 [[4.881723]
[5.189986]] [@.019%a7484]
1994 5.2037543e-85 [[4.881734]
[5.109997]] [@.01902499]
1995 5.1763218e-85 [[4.881745]
[5.11@808]] [@.818%7525]
1996 5.15081138e-85 [[4.881756]
[5.1108187]] [@.81892565]
1997 5.123555e-85 [[4.881767]
[5.11@8297]] [9.081887617]
1998 5.8959206e-85 [[4.8817773]
[5.11084]] [@.01882678]
1999 5.8692397e-85 [[4.881788]
[5.11@85087]] [9.081877754]
2008 5.8433042e-85 [[4.8817983]
[5.11@861]] [@.81872344]
Testing [[39.986168]]

CO . I T S W N Y

[=a]

KHu

KHu

KHu

