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Introduction

* Fifth-generation (5G) and beyond
communications are mainly characterized by
1) massive connectivity,
2) ultra-reliability and low latency, and
3) increased throughput.

* Satisfying these objectives in conjunction with
the rapid growth of the Internet of Things
(loT) applications represents a challenging
task, especially in highly dynamic and
heterogeneous environments.

* A promising approach is to adopt unmanned
aerial vehicles (UAVs) as aerial user
equipments (UEs) or flying base stations (BSs).
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Introduction: Drawback of Current Communication System?

* The current wireless communication system fully depends on the
infrastructure in order to provide services to mobile users. However, the
deployment and operational cost of the infrastructure are high.

* Actually, mobile users can not get any services when infrastructure
collapses because of the natural disasters.

* Moreover, users especially in the mountain areas, countryside and deep
sea also can get internet access because it is difficult and not possible to
deploy infrastructure for wireless communication.
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Introduction: Drawback of Current Communication System?

Only 63.2% of world population can get internet access in till Oct, 2020.
So, how about the remaining 36.8 % ?7?7?

WORLD INTERNET USAGE AND POPULATION STATISTICS
2020 Year-Q3 Estimates
World Regions Population Population | Internet Users | Penetration Growth Internet
(2020 Est.) % of World 30 Sept 2020 § Rate (% Pop.) § 2000-2020 | World %
Africa 1,340,598,447 17.2 % 631,940,772 471 % 13,898 % 12.8 %
Asia 4,294 516,659 55.1%| 2,555,636,255 59.5 % 2,136 % 51.8 %
Europe 834,995,197 10.7 % 727,848,547 87.2 % 593 % 14.8 %
Latin America / Caribbean 654,287,232 8.4 % 467,817,332 1.5 % 2,489 % 9.5 %
Middle East 260,991,690 3.3 % 184,856,813 70.8 % 5,927 % 3.7 %
North America 368,869,647 4.7 % 332,908,868 90.3 % 208 % 6.8 %
Oceania [ Australia 42,690,838 0.5 % 28,917,600 67.7 % 279 % 0.6 %
WORLD TOTAL 7,796,949,710 100.0 % | 4,929,926,187 63.2 % 1,266 % | 100.0 %

KYUNG HEE Source: https://www.internetworldstats.com/stats.htm (&/
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Introduction: Al /ML

* In particular, UAV-based communications can improve the network performance
in emergency situations by providing rapid service recovery and by offloading
in extremely crowded scenarios.

* The integration of artificial intelligence (Al) and machine-learning (ML)
techniques in wireless networks can leverage intelligence for addressing various
issues.

* Thus, the combination of Al/ML and UAVs appears to be strongly correlated in
different disciplines and applications and throughout the network layers,
promising unprecedented performance gains and complexity reduction.

Artificial intelligence

t( y KYUNG HEE  Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based (N
N/ e Communications. Sensors 2019, 19, 5170 NETWORKING
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UAV-Assisted Wireless Networks: The Concept and
Challenges

* Overview

* Ongoing Projects

* Types of UAVs

* Industrial Applications

* Challenges of UAV Deployment in Communication System
* Application of Al in UAV-based Communication
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UAV-Assisted Wireless Networks Overview
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Base Station/ Small-cell Base Station/AP

AI

@ On-demand unmanned aerial vehicle base station
deployment

@ On demand data collection and analysis

© Providing user-oriented services in next-generation
mobile devices
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Ongoing Projects: (SpaceX : Starlink Project) 9

SATELLITES 1000km +

KEEPING SPACE
CLEAN

Starlink is on the leading edge of on-orbit debris mitigation,
meeting or exceeding all regulatory and industry standards.

At end of life, the satellites will utilize their on-board propulsion
system to deorbit over the course of a few months. In the
unlikely event the propulsion system becomes inoperable, the
satellites will burn up in Earth’s atmosphere within 1-5 years,
significantly less than the hundreds or thousands of years
required at higher altitudes.

STARLINK 550km

y KYUNG HEE W
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* Each satellite weighs
approximately 573 pounds
(260kg) and features a
compact, flat-panel design that
minimizes volume, allowing for a
dense launch stack to take full
advantage of the launch
capabilities of SpaceX's Falcon
Q rocket.

* The satellites will be around
350 miles above earth.

R https://www.starlink.com/
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Ongoing Projects: (SpaceX : Starlink Project)

How fast will Starlink internet speeds be like?

* The latency should be between 25ms and 35 ms. This is
fast enough for most internet tasks, including gaming.

* Download speeds will be pretty quick, at about 1Gbps

How many satellites will be needed for the
services?

Federal Communications Commission (FCC) allows to put
12,000 SpaceX satellites above the planet

When will Starlink internet be available?

Expected to lunch sometime in 2021
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UNIVERSITY

https://www.starlink.com/ werworminG

EEEEEEEEEEEEEEE



Ongoing Projects: (SpaceX : Starlink Project)

* Ku (12-18 GHz), Ka (26.5-40 GHz) and V (40-75 GHz) bands.
* V and Ku bands for network’s users.

* V and Ka bands will be used to connect to gateways and for tracking, telemetry and
control purpose.
" Transmissions from satellite to user terminals: 10.7 — 12.7 GHz and 37.5 — 42.5 GHz
= Satellite to gateway transmissions: 17.8 — 18.6 GHz and 18.8 — 19.3 GHz and 37.5 — 42.5 GHz
" Transmissions from terminals to satellites: 14.0 — 14.5 GHz and 47.2 — 50.2 GHz and 50.4 - 51.4 GHz

= Transmissions from gateways to satellites: 27.5 — 29.1 GHz and 29.5 — 30.0 GHz and 47.2 — 50.2 GHz
and 50.4 — 51.4 GHz

" Tracking, telemetry and control (downlink): 12.15 = 12.25 GHz and 18.55 - 18.60 GHz and 37.5 —
37.75 GHz

" Tracking, telemetry and control (uplink): 13.85 — 14.00 GHz and 47.2 — 47.45 GHz

https: //www.elonx.net /starlink-
compendium /#:~:text=Here%20is%20a%20breakdown%200f,GHz%20and%2037.5%20%E2%80%%23%2042.5%20GHz&text=Transmissions%20from%20gateways%
20t0%?20satellites, GHz%20and%2050.4%20%E2%80%%23%2051.4%20GHz
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https://www.elonx.net/starlink

Ongoing Projects: Google’s Project Loon (High Altitude Platform)

Goolge’s Project Loon: A network of balloons travelling on the edge of
space is designed to connect people in rural and remote areas, helping fill
coverage gaps, and brining people back online after natural disasters.

&Y KYUNG HEE
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Ongoing Projects: Google’s Project Loon (High Altitude Platform)

The Loon Flight System consists of three
separate systems:

1

GEosTATIONARY | T . 1. The balloon envelope
# 2. The bus
i 3. The payload

LOW E.l‘\RTH ORBIT
gt J Together, they work seamlessly to provide lift,

monitor flight telemetry, and provide
connectivity.
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Ongoing Projects: Google’s Project Loon (High Altitude qu’rform

Balloon Envelope

Made from polyethylene, each tennis-court-
sized balloon envelope actually consists of a
balloon inside of a balloon. A fixed amount of
lift gas in the inner balloon keeps the system
aloft. Adding or releasing outside air to the
outer balloon changes density, allowing the
system to ascend or descend when needed.
Our balloons are built to last for hundreds of
days before landing back on Earth in a
controlled descent.

&Y KYUNG HEE
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Ongoing Projects: Google’s Project Loon (High Altitude Pla’rform“

r ' =)
SOLAR PANELS R—— .'. ALTITUDE CONTROL SYSTEM

J Bus

The bus consists of the hardware necessary for
safe flight operations, including highly efficient
solar panels that power the system, an altitude
control system for navigation, and a parachute
that deploys automatically to guide the balloon
safely back to Earth after flight. For added
safety, Loon includes redundant satellite
communications links and transponders for
constant visibility to air traffic control.

SAFETY GEAR

L —
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Ongoing Projects: Google’s Project Loon (High Altitude PIc:’rform)

-
LTE ANTENNA

Payload

The payload consists of the communications
equipment required to deliver connectivity,
including the radio base station and antennas.

GIMBALS
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Ongoing Projects: Google’s Project Loon (High Altitude Plo’rform)

HOW IT WORKS

* Loon integrates with mobile network
operators’ existing network
infrastructure to extend their
coverage.

* We maximize value by deliverin
seamless connectivity to subscribers
through a unique solution of ground
gateways, flight vehicles and
software.

b https://loon.com/technology/flight-systems/ .
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The Differences Between UAY, UAS, and Autonomous Drones

What Is an Unmanned Aerial Vehicle (UAV)?

“UAV" refers specifically to aircraft that can be
remotely piloted without requiring a human on-board
to fly. While this term can be used accurately to
describe drones in commercial or civilian use cases, it is
most commonly used in reference to military
applications.

\ Two types of UAVs l
[ ==
\ e

Fixed Wing UAV Rotary Wing UAV

KYUNG e . ®
https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/ NETWORKING



The Differences Between UAY, UAS, and Autonomous Drones

What is an Unmanned Aircraft Systems (UAS)? —

“Unmanned aircraft systems” refers to the entire
system required for advanced drone operations including
the aircraft, ground control station, and communications
system. UAS can either require a human pilot on the
ground or be fully autonomous without need for a
human. Any UAS includes a UAV as the aircraft
component of the system.

https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/ (N:
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The Differences Between UAY, UAS, and Autonomous Drones

What is an Autonomous Drone?

The term “autonomous drone” describes a UAV that
can operate without any human intervention. In other
words, it can take off, carry out missions, and land
completely autonomously.

An “autonomous drone” is a type of UAV, but a UAV is
not necessarily an “autonomous drone” . In the case of
autonomous drones, communications management
software coordinates missions and pilots the aircraft
instead of a human. Because an “autonomous drone” is
piloted by software instead of a human, an autonomous
drone is part of a UAS by definition, as it requires a
complete system to operate.

e v KYUNG HEE https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/ ’N
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Automation

The use or introduction of automatic
equipment in a manufacturing or

other process or facility.

How automated a drone is always
comes down to how much automatic
equipment is involved and how
much  manual intervention it
requires. An automated drone
follows orders about destination and
route but cannot make decisions.

Types of UAVs: Automation VS Autonomy

Autonomy

Freedom from external control or
influence; independence.

How autonomous a drone is must
always be a measurement of how
independent the platform and its
workflow are. A truly autonomous
drone would decide on destination
and route as well as control in the
air.

https://dronelife.com/2019/03/11/droneii-tech-talk-unraveling-5-levels-of-drone-autonomy/
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Types of UAVs: Levels of Drone Autonomy

DRONE INDUSTRY INSIGHTS
THE 5 LEVELS OF DRONE AUTONOMY
Level Level Level Level Level Level
Autonomy
e 0 1 2 3 4 5
Human . . O
Involvement - - d
Machine : W# W e
Involvement b1
Degree of No Conditional High Full
Automation | Aytomation Automation Automation Automation [
Description | Drone control Pilot remains in || Pilot remains Pilot acts as Pilot is out of Drones will be
is 100% control. responsible for || fall-back the loop. abletouse Al | ©
manual. Diihe hias safe operation. system. Dione s Eggilrsft“o rr:tlgmas :
control of at Drone can take || Drone can backup g
: : autonomous
least one vital over heading, perform all systems so ——
function. altitude under functions that if one fails, 5 stemgs :
certain ‘given certain the platform y )
conditions. conditions’. will still be 3
operational.
Obstacle : -
DRONEIl.com
o Mar DRONE INDUSTRY INSIGHTS
https://dronelife.com/2019/03/11/droneii-tech-talk-unraveling-5-levels-of-drone-autonomy/ @
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Types of UAVs: Levels of Autonomy & Drone Applications

|

Application methods Application methods Application methods Application methods

Racing (recreation) Q Inspection & MamtenanceQ Mapping Ulvd Mapping [J:LY] Photography & Filming e
Localisation & Detection @ Spraying & Seeding :E Delivery .‘;
Photography & Filming 1 Measuring f Surveying a %
Protection & Security a Surveying E%

Monitoring l”
Level 5 - Full Automation
The drone controls itself under all circumstances with no expectation of
human intervention. This includes full-time automation of all flying
tasks under any conditions.

UNIVERSITY
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Industrial Applications:

Generic G/G AND A/G
Communication

Most generic application of our
solution is standard ATC functionality
where operators are able to access
to radio and telephone assets for
their generic air traffic control needs.

Operators are able to communicate;

« With airfield ATC units

+ Ground support crew

* Neighboring ATC/ACC Center

+ Command and Control Centers.

Radio Relay Over UAV

One of the most innovative
applications of our airborne radio
gateway is the ability to use the
UAV itself as a radio relay station.

This capability not only enables

the remote units in the field to

Ce icate among th lves, it
also allows operator assisted relay
functionality as well.

Bridging the communication gap
between geographically separated
units can play a game changing role
on the battle field.

Special Operations
Communication Support

Special operation communication
needs are more challenging by their
nature.

Most of the time, special operation
teams have to operate in

detached fashions but UAVs can
enable effective and real-time
communications between different
teams, as well as between teams
and Command Control Centers.

KYUNG HEE

Extended Radio Coverage Over
Datalink

Our airborne radio gateways, when
integrated into our VCS solution,
enables the operators to use radios
on the UAV for extended radio
coverage.

The most obvious advantage of

our solution is as it removes the
physical barriers of radio relay
between GCS and UAV and extends
radio coverage over the existing IP
datalinks.

When SATCOM facilities are used,
radio coverage becomes limitless.

Military Applications

URIVERSTTT http://www.uavvoice.com/Catalogue_Communication_System_for_UAV.pdf

Urban Warfare Support

Urban warfare has its own
challenges when it comes to
communication and without
proper communication capabilities,
missions can be under risk.

Our VCS solution, when coupled
with airborne radio capability,
can support even the most
challenging communication
environments. Since UAVs are
in "advantageous"” position due
their operational altitude, this
also enables them to bridge the
communication gap between
dismounted units.

Close Air/Ground Support
Some specific value-added use
cases for relay functionality of our
solution is the close unit (air or
ground) support for forward units.

Forward units frequently suffer
from communication gaps with
the command and control centers.
UAVS can play a very important
role in bridging the gap between
these units.

Natural Disaster Relief Support

Most public communication
channels are interrupted in the
event of a natural disaster.

UAVs can play a critical role in
terms of communication support in
the event of a natural disaster.

Radio access and radio relay
capabilities of our solution can
greatly enhance the effectiveness
of the UAVs to enable critical
communication facilities in the
field.

N
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Industrial Applications: Temporary Events

On-Demand Aerial Base Station Deployment ‘-. @
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Industrial Applications: Smart Farming

* To access the vegetation health by using Remote Sensing (RS)
techniques and image analytics.

* One of the most applied RS techniques is aerial monitoring,

b?&using images captured by satellites, manned aircrafts and / \
UAV

* Satellites images are very expensive for a typical farmer,
usually their resolution and quality are not satisfactory and
practical due to weather conditions

* Aerial images captured by human-crewed aircrafts present a
better quality compared to the satellite images, but this
method is also very expensive

* Small UAVs, also known as drones are characterized as o
more economical solution

_ Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Thomas Lagka, loannis Moscholios, “ A compilation of
" KYUNG HEE UAV applications for precision agriculture, Computer Networks, 2020. (N
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Industrial Applications: Disaster Areas

* At the top level, UAVs
connect to the GPS satellite / \

by quipping receiver on T 4

board, which periodically R
provides the geolocation and @ N TN
time information e i R A

* This is critically important for O N L /

UAVs to accurately and T
safely accomplish the | B
disaster response tasks pA

Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Thomas Lagka, loannis Moscholios, “ A compilation of .
KYUNG HEE UAV applications for precision agriculture, Computer Networks, 2020. (&
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Industrial Applications: Vehicular Networks ( High Speed Trains)

wmmmee— Energy Harvesting
d—— Information Transmission

* UAV can also be used as a relay
for vehicles and high speed trains [t

Haitham S. Khallaf, and Murat Uysal, “UAV-Based FSO Communications for High Speed Train Backhauling”, @
Y \id 1)
KYUNGHEE  |EEE WCNC 2019. L
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Challenges to deploy UAVs in Communication System

* UAVs are energy constrained devices. Therefore, efficient energy
management is essential.

* Optimizing energy-aware trajectory for the good channel quality

* Allocating optimal communication and computation resources to overcome
the onboard energy limitation while meeting the users' QoS requirements

* Delploying dynamically a swarm of UAVs in an automatic manner to
mitigate interference and avoid collision
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Applications of the Al/ML in UAV-based communications

Ao

Interference Management
Autonomous Path-Planning

UAV Swarm Intercommunication
Cooperative Multi-UAV Transmission

Channel Modeling

Autonomous
Path-Planning

N = W - 7
UAYV Swarm
Intercommunication

w Eavesdropping

o

Interference

Management A A

Observations

Prediction and Action
Selection

—g- Air-to-Air Link |
I —7Z- Air-to-Ground Link |
| —#~ Interference Link :

Cooperative Multi-UAV
Transmission

/e
b (G
A

é UAYV Detection

YUNG HEE  Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based
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Applications of the Al/ML in UAV-based communications

PHY Layer
Communication
Aspects

Resource
Management

Position Security/Safety

\ e s UNIVERSITY . . NETWORKING
CO“““UnICatIOnS- SeIISOIS 2019, 19, 511 0 INIELLIGEN‘!ELAB
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Use Case 1: Ruin Theory for Energy-Efficient
Resource Allocation in UAV-assisted Cellular

Networks

* Intfroduction

* System Model

* Ruin Theory Preliminaries
* Problem Formulation

* Solution Approach

* Simulation Results
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UAV-Assisted Cellular Networks

® Communication features of UAV

* Line-of-site communication at high altitudes
* Dynamic placement at desired locations

* Flexibility and automation

* UAV Communication Challenges

* Energy efficiency

Trajectory design

Channel modelling

Deployment

Interference management

e Resource allocation
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System model of UAV-assisted cellular network

Solar Energy Harvesting

UAV surplus Harvested Hovering
pov?r power power
- v ~. v T = T — P .l —
S ot D Ty u(0) = +Hen - Y Pul o
/ ek j
(( UAV initial Transmit
power power

mMTC

.{3 KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv (K_(
e preprint arXiv:2006.00815, 2020. TELLIGENGE L
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K : number of users
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UAV Channel Model

Power " Channel gain
> Pk ” — | g
. _ J Pij :
* SINR: Vik = T — Noise
Interference - ST JRER J- UAV-BS
Ch | . Pathloss LoS: Line of Sight
. annel gain: s T/
9 { hj/c — 10 dikl/10
Los pathloss 1
. Andur f . LoSlosses
* Path-loss: I Opp> 7= 201og (%) +|Lios-
Non-Los pathloss Ardo f Non-Los L
OS};DS — 2010 ( TTClyy e ) 4 ot / on-Los Losses
Total pathloss ~ « «
O = Priosshos o pplN-oghLes, Probability of non-Los
Environmental constants
X 1 d,:distance between BS j and cellular user k
o oo . Pro i _ c: speed of light
PrObCIblllfy of LoS: uk ] a e@bﬂ@( 1:_0 tan ! (?T‘;) — (L] | f: channel frequency
Association Bandwidth SNR
* Data rate: _ W
ijff — | Lk ik lUg (l T Vik

@~
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5G-NR coexistence frame structure

eMBB TTI
X
-~ ~
¥
\x\
~J. URLLC
/ 7 Arrival
URLLCTTI E
®
mMTC Multiplexed Frame

URLLC Association | | €eMBB Rate

[ \
The achievable eMBB rate: Dy, (w5, Pjr) = | 1T — 1 Z e ||| Bk Vi € K.
\ k' X,

&% KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv \\/
'f V UNIVERSITY =
' preprint arXiv:2006.00815, 2020. INTELLIGENCE LAB




Ruin Theory Preliminaries

* Ruin theory expresses an insurer’s vulnerability of bankruptcy

* Surplus process represents the insurer’s capital at a time instant, t, and comprises two
opposing cash flows

* The insurance premiums

e Random claims Premium (harvesting power)
Initial power )
Random claims
\ / (power cosumed by transmitting)
pu(T) = po|H PT|—|Su

* Definition of Probability of ruin:

V(po, T) = Prlp.(s) <0, for some s as 0 < s < 7]

5Py KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv (N\
eniversity - preprint arXiv:2006.00815, 2020. e
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Ruin-based: Problem Formulation

Total transmission and processing cost minimization problem.

Data rate — Probability of ruin
max gZZDjk (Zjk, Pjk) —EZ%(PDJ)-, (11)
JeT kEK ueld
Y P <p;, Vje{{0}uS}, (11a) | BS transmission power budget
kek
Pr(y,0 >¢) > (1—¢), VjeJT,Vk €Ky, (11b) | URLLC reliability
Z Ty =M, VjET, (11¢) | URLLC latency
K ek Ensuring the immediate scheduling
Y zp=1, VkeKk (11d) | Unique user association
JjeTJ
0< P < pmax, Vi€ T, keK, (11e)
Variable bounds
zr € {0,1}, Vje T, kek. (11f)
W v, . Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv () :
R preprint arXiv:2006.00815, 2020. ﬁxm
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URLLC Allocation

* URLLC Association: At time slot t, )\u number of URLLC users are scheduled in the
same slot. A user K’ is associated with the BS ] which delivers best SINR

* URLLC Power allocation: Optimal power allocation to meet certain SINR threshold
which ensures the URLLC reliability

PI‘( __

ﬁa'- 7 L

» > () can be expressed as CDF £y ()

SINR T T'SINR Threshold | | Reliability

Pr (] 2[() = =)= F, ., () = (1 = )= ¢ 2 F} ! (1 = ¢)

jk
* Optimal solution li b _
Optimal solution lies on boundary Vi = ¢
* Compute optimal power Fl(1—e(1+1)
P* o ’ij,
ik h;
i = Djk i "
S Z P'Ikh'lk —+ 0'2 _ 2 )
i'eI\{i} Y [ = Z;j’ej\{j} Pj,khj’k T Wiko (WN




eMBB User Association

* Association problem:

Algorithm 1 User Association Algorithm

1: Input: J, K, Pj, p;
2. initialize: 2%, =0
Imax D (po, 1), ik
$ 2. 2 Do @ Pi) = €3 Yulpo, 1) \ Step 1
JEJ kek uel 4: Compute 1, (py, t) from (10)
- ] 5: Compute 7, from (16)
Zlﬂ"_ . VkeKk, - 6 for k=1 to K do
jedJ 7: Select single BS j with max 1y
JES
i €{0,1}, Yje T, kek. 8. end for
ik €10.1}, Vi€ T, . Step 2:
. for j=1to J do
: Initialize P = p;
12 while P > 0 do
ik = ;1(1 _&bu(pﬂrt))ﬁ/jk 13; Find max y;;
14: Update =7, = 1, and P = P — Py
/ 15: Remove max v from SIN R vector ;p
o=
16: end while
Control factor the probability of survival 17 end for
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eMBB Power Allocation

* Power Allocation Problem: * Standard Form of Power Allocation Problem:
- min Z Z Wik log (1 + i)
mgx Z Z ik JET keK,
J€T keke

) ‘ S.1. P'k:p"_ P:.krj VjGJ,
Z k< pj— Z P, Yje{{0jush, » REZ'C:E J j k; jk
keKe K ek ’

_PL<0, Vied.kek
Oﬁpjkgpmax; \V{jEjjk'E/Ce. jk—o" VJEJJ ek

\ ijkgpmax: vjEjjke)'CE.

the optimal power allocation

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv

P KYUNG HEE preprint arXiv:2006.00815, 2020. NE\W_R;N
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eMBB Power Allocation

* KKT Conditions

* Lagrangian Function: T wiktk
VL(P)=——Z + AN — g
F) T+ 0b) 0 1
LIP.X p,v) Z Z Wik log (1 + 7jr) +ry =0, VjeJ. kelk..
JET keKe
s (Srcne s e M| o vieske,
JET EEK, k' e,
ij>0, — ,Ujk:()
+ Z Z pik Pji, + Z Z Vik(Pjk — Pmax)-
JET keK. JET kEKe Vit(Pik — Pmax), V9 € T,k € K,
hik
6-: J P'*_ max >0,::>L‘"=:0
ik ]_ + z .Ijjrkhjrk + Lﬁjkﬂ'z ’ ( jk p ) jk
i'€T\{0.5}

Mk, Vik > 0, "f'fj S j,-I’J (S K:F
Lagrangian multiplier for power budget constraint of B\ ‘

* Optimal Power P, = min { p S Lo
1 Imax »
y KYUNG HEE / Y
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eMBB Power Allocation

T Wik m
‘U’E(P)—— Ik - / +/\j_ﬁ,ik
1+ Pyt + 0
—{_Ifjk: ; VJ ij‘E)’Ce;
R
0. = —2
Tk I+ o2’
751, Wik0jk
VL(P) = =7 +Aj = ik

(L+0xPjr)
+vir =0, VjeJ, kel
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Systematic Diagram of Proposed Algorithm

Network
Topology

w

[ URLLC association ]

and power allocation

b

[Compute ¢ (po. )4 Probability of ruin

w

| eMBB association I-‘i

|

[ eMBB power allocation ]

True
KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv @
‘ UNIVERSITY preprint arXiv:2006.00815, 2020. NETWORKING
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Performance Evaluation (1)

J ml == UAV-assisted network
10 I»‘ =l Terrestrial network
?
— I
-§ 8 - ’1 "..5‘ \
1
% 6 iff N ’0
Eel 4 T
5 t N
7} 1" .~
2 I. I .‘I.-.
2l 44
illl
0 25 50 75 100 125 150 175 200

Number of cellular users in the network

I SINR
s Ruin

254.0

169.0

Flight time Served users

Network rate vs. number of cellular users in the network.

KYUNG HEE  Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv QVD

UNIVERSITY preprint arXiv:2006.00815, 2020.

Comparison of ruin and SINR-based approach for UAV flight
time and number of served users.
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Performance Evaluation (2)
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== Total network rate
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Comparison of ruin and SINR-based approach
for UAV flight time and number of served users.
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Network rate vs. number of cellular users in the network.
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Summary

* The UAV-assisted cellular networks to enhance the cellular network capacity is
studied.

We have formulated a joint optimization problem for the user association and power
allocation for the 5G NR traffic classifications.

First, the probability of ruin is used to estimate the possible number of cellular users
to be associated with each UAV.

Then we have iteratively solved the power allocation problem.

Simulation results have demonstrated the effectiveness of the proposed ruin-based
energy-efficiency scheme.

,{ v KYUNGHEE  S-M. Ahsan Kazmi, Latif U. Khan, Nguyen H. Tran, Choong Seon Hong, "Network Slicing for 5G and Beyond Networks," ISBN 978- (N
(7o 3.030-16169-9, Springer —
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Use Case 2: Energy-Efficient Resource Management in
UAV-Assisted Mobile Edge Computing

* [ntroduction

* System Model

* Problem Formulation
* Solution Approach

* Simulation Results
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* Recently, unmanned aerial vehicles (UAVs) have been widely deployed to extend the
coverage area of the cellular networks and to provide network services to mobile
devices where cellular infrastructures are not deployed yet

Introduction

* Moreover, by implementing a MEC-enabled UAYVY, a network operator can provide
remote and on-demand MEC services to users that are out of infrastructure coverage
ared

* However, there are several challenges such as energy minimization of both UAV and
mobile users, optimal task offloading, resource allocation, and the UAV’s trajectory
while satisfying the mobile devices’ latency requirement

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 2020. (N\‘
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System Model

"~ UAV assisted MEC
—1— Task Assignment
w Mobile device

Fig. 1: Illustration of our system model.
* A set of mobile devices : Iy
* Location of device ‘v’ : o0, = [Tu.yu]T
* UAV’s total flight period: T
* UAV is flying at fixed altitude : H
e Location of UAV at time ‘' : c(t) = [z(t),y(t),H|F,0 <t < T
* Discretize UAV flight period into N time slots
* UAV needs to return initial location at the end of flight period : ¢(1) = ¢(N)

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
.{3? KYUNG HEE “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, (K(\
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Communication Model

* Speed constraint of UAV at time slot ‘n’ :

lle(n +1) — e(n)]

L

<V.vneN.

* The energy consumption of UAV flight at time slot ‘n’:

LV : the maximum distance that UAV can be
traveled by the UAV in each slot
L: Duration

* The distance between UAVY and device ‘U’ at time slot ‘n’:

E"(n) = k‘(”dn +1) - c(n))||) VYneN
L k) )
k = 0.5M- UAV weight

du(n) = \/H? + ||le(n) — 0,]|2, YuelU,VneN.

* The achievable data rate of device ‘U’ at time slot ‘n’:

(¥ KYUNG HEE
ONTVERSITY Association

u ()| hu(n)]?
R,(n) = au(n)Blog, (1 4-/}?“( )L;\( ) ) , Vu, Vn,
/ N
Bandwidth Transmit power of device Channel gain (w&/
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Local Computing Model

* Computation task of device ‘v’ at time slot ‘n’ can be denoted as tuple:

{Bu,a,(n), Tiugl)},

L TN

Required CPU cycles to compute 1-bit of Input data size Tolerable amount of time to complete task
input data
* Fraction of task executed remotely at UAV and device ‘u’: ly(n) and (ay,(n)—1,(n))

* Local Computation Latency /delay of device ‘u':

tt (n) = Pulau(n) — L (n))j YuelU,Vn e N,

fi
* Local energy consumption of device ‘v’ at time slot ‘n’:
EL(n) = w(f))?Bulau(n) — lu(n)), Yu cU,¥n e N|

. _ —27 N
KYUNG HEE w =5 x 10 (K_g:

EEEEEEEEEEEEEEE

Computation capacity (cycles/s) of device ‘U’




UAV-Aided Edge Computing Model

Uplink transmission time of device ‘v’ when assigning fraction of task [,,(n) to UAV as time slot ‘n’

lu(n)
R,(n)’

t"P(n) = Yu e U,Yn e N.

The uplink energy consumption:

E'(n) = pu(ﬁ)fu(ﬂ)? Yu e U,¥n € N.

The computation latency at UAV:

Buly(n)

ty F(n) = 0 (n).

Yu el ,VneN,

I Computation capacity of UAV allocated to device ‘n’

The energy consumed by the UAV for executing the fraction of task of device ‘v’

E®™(n) = q(f9)?Bulu(n), VYne N, g =5 x 10747

o

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

.k_'_/‘.
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Problem Formulation

* To the best of our knowledge, our work is the first to consider the energy minimization of both UAV and mobile devices

by jointly optimizing the UAV’s trajectory, communication and computation resource allocation, and task assignment. We

can formally post this problem as follows:
N U N

min E!(n) + E"(n ) + EY(n
_min (Z:jg )+ B2 ) + 30 BV
N U
+> D EX(n) (15)
n=1u=1
st 19 (n) + £ (1) < Ty(n), Yu€U,Vn e N,
(15a) Latency constraint of task of each device at each time slot
t!(n) < T,(n),Yu e U,¥n € N, (15b)
lu(n) < ay(n),YVu e U,¥Yn € N, (15c) Data size constraint of task of each device
I
> f&(n) < fC(n),vne N, (15d) Computation capacity constraint of UAV
u=1
Df Pu(n) < pu™(n),Vn €N, Vu €U, (15€) Power constraint of each device
z_:l au(n) < L,0< au(n) < LYu €U, n €N, Fraction of bandwidth allocated to each device
(15f)
le(n + 12) —cm)ll < V.¥n e N, (15g) Speed constraint of UAV
c(1) = e(N), (15h) Location of UAV at initial and final flight

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong, .
KYUNG HEE “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct (&/
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Solution Approach

* Our proposed problem is MINLP(mixed integer nonlinear programming). Therefore, it is an NP-hard
problem. Therefore, we use Block Successive Upper-bound Minimization (BSUM) method to solve the
problem. Then, we rewrite the above mentioned problem as follow:

min c.l. o, p,
ceClel axEry, O( 3 by , P f)

peEP . fEF
r r Fiy R com
where O(c,, e, p, f) = (Z;Ll Sy EL(n) + E.;P(n)) || @ Ble )+ () < Tuln), 3 auln) < 1,0 < auln)
u=1
St B®(n) + 00 Xumy B€(n). Furthermore, < 1,YuelU,Vne N},
C 2{c: 1% (n) 4 1< (n) < T, (n), lle(n + 1) — c(n)]] <v. || P E{p : tP(n) + 7™ (n) < Tu(n),0 < pu(n) < pi*(n),Vn,
N L Yu € U}, U
Yu € U,¥n € N}, FE{f t2(n) +t2™(n) < Tu(n), Y _ f€(n) < f€(n),Vu,
LE2{l:tP(n) +t°(n) < Tu(n),th(n) < Tu(n),l.(n) < u=1
ay(n),Vu € U,Vn € N'}, Vn e N},

* The proximal upper-bound function:

. ok . . . o~ = L
O"E(Ci;ch’lk’ah?pkifk):O(Cf;c:!jaip:f)_F%

I (ei —€) I«

Penalty term

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong, ,_
?3? KYUNG HEE “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct (&:
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Block Successive Upper-bound Minimization (BSUM)

r
f(X,-, X_ /')

- —————

v
v

r X; r X;
X ! X ! X; X;

(a) (b) (c)

[FIG3] The upper-bound minimization step of the BSUM method is shown. Here we assume that coordinate i is updated at iteration
r+ 1. ltis clear from the figure that after solving the BSUM subproblem (3), f(x/™", x";) < f(xi, x",), that is, the objective function is
strictly decreased.

[IF € argmin ;e xu; (x;, ),V i€ I’ a)

=xi \Vkel

%HEﬁIHEEIearning and signal processing." IEEE Signal Processing Magazine 33.1 (2015): 57-77. NET;;:'NG

INTELLIGENCE LAB
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Solution Approach

* The solution at each iteration can be updated by solving the following sub-problems:

) € min O, (e e),19, ), p¥), f“"']), (18)
CT-E
!*Ek-i-l) = ml]g@ ( {k+1] {kjﬂp{k}: f{k)) (19)
L;e
D:EH' ) € min O; (ar:!t:1 ok, ekt k41 kj,f(k)), (20)
o e
p"*V € min O; (Pa p*), F ﬂ‘“*”;ﬂ“"*”;.ﬂ“);
p;,eP
(21)
f£k+ ) 11:111 ( f““ (k+1) ![k+1}1a[k+1]=p(k+l))
eF
(22)

=

Algorithm 1 BSUM Algorithm for an Energy-Efficient Re-
source Management in UAV-Assisted Mobile Edge Computing

1: Imitialization: Set £ = 0, ¢; > 0, and find initial feasible

o

9:

solutions (¢(@,1® o p©) £).
repeat
Choose index set Z*;
Let c(k“) o minC cc O; (Cz c(k),l(k), a® pk) f(k));
Set ¢ ("“— ck, Vj ¢ IF;

Find I(HI) (LH), pgk“), and fgk“) by solving

(19), (20) (21), and (22);
k=kFk+1;

until || = o‘“l

| <&
Then, set (c; (k+1) D Q(RHD) kD) (i)

desired solutlon

) as the

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct

KYuNg e 2020
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Simulation Results
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Fig. 2: Trajectories of UAV under different flight period 7.

== Trajectory of UAV at T=40s
—=- Trajectory of UAV at T=15s
e UE
'S t=20s
,—-’—‘” \.\“".\
J" N
’ X
’I' \‘
L \
f/ ‘\
!
- \
!/ -
19~ AN %
Iy -
Iy .p""‘ h‘t-.—h""n— -
¥ _'-‘:.__.- - ~-o
=" |
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x(m)

t=35s

Total energy consumption (J)

B Proposed solution

B BCD based solution

B Equal resource allocation
Remote task execution

UAV

(a)

loT devices

*BCD: Block Coordinate Descent

3(a) shows energy consumption of UAV and IoT devices.

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct

KYUNGHEE  2020.
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Simulation Results
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Fig. 4. Energy consumption under different number of
mobile devices.

(c)

3(c) shows oftloaded data size of the task under different tolerable latency.
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Summary

* In this work, we have studied the problem of energy-efficient UAV trajectory
optimization, resource allocation, and task offloading in the UAV-assisted mobile
edge computing system.

* We have shown that the proposed problem exhibit a non-convex structure, and thus,
it is challenging to solve by using traditional convex optimization techniques.

* To address this issue, we have introduced the BSUM algorithm, which is a powerful
tool for non-convex.

* Finally, we presented the numerical results to show the efficiency of the proposed
solution approach where it was clear that our proposed algorithm outperforms other
baseline algorithms.

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct

&Ry xYuNGHEE  2020. «
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Various Machine Learning Approaches

* Reinforcement Learning (i.e., Q-Learning) >| A |
"| Agent
gy

state | |reward action

3, R, : i A,

t+1

. . | Environment ]*—
* Deep Learning -

* Artificial Neural Networks (ANN)

.

L]

* Deep Reinforcement Learning (DRL) ;\1,
—— Policy ———
(i.e., Deep Q-Learning) Aty
*  Actor-Critic Learning
D
Critic error
vV Ifxe
d — -
state — Function action
/
reward

—‘ Environment ‘<~

-
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Use Case 3: Data Freshness and Energy-Efficient UAV
Navigation Optimization: A Deep Reinforcement
Learning Approach

* [ntroduction

* System Model

* Problem Formulation
* Solution Approach

* Simulation Results
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¢ In this work, we design a navigation policy for multiple UAVs where mobile base stations
(BSs) are deployed to improve the data freshness and connectivity to the loT devices.

Introduction

¢ We formulate an energy-efficient trajectory optimization problem in which the objective is
to maximize the energy efficiency by optimizing the UAV-BS trajectory policy

*** We also incorporate different contextual information such as energy and age of information
(Aol) constraints to ensures the data freshness at the ground BS.

% Second, we propose an agile deep reinforcement learning with experience replay model to
solve the formulated problem concerning the contextual constraints for the UAV-BS navigation.

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and

\.

o Energy-Efficient UAV Navigation Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on _
'{8‘;’ KYUNG HEE |ntelligentTransportation System, Early Access (N
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System Model

u3(z3, Y3, hs) j B iD

ty t2 tatyty gty
Information generation and

update time

Aol
ot 2l Ty, . N2 B
~—r/ uz(xy4,1 2 7 \I AL
d s
lll(-l'x-!ll-hl)ia. ;E] “ ’ A,
? :
: e
4 e
T "__l'— @ = e
~_ P33 @ P4(1"{ s 4a)
= |p| » pa) (pa ) ) y—q;” -
A Ed n
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o pl(:rl! UJ (?ﬁ P p2) \,\\pz 32, @ ’pS zSayS)@/

(p2 = ps)

: @@ Trajectory Waypoint UAV-BS Communication .——— UAV to BS-MEC mmWave

Coverage Back-haul :
o, .
Trajectory Waypoint loT to UAV Wireless _ | . ¢ once Ground Base Station with Edge WUAV BS +*%* Set of loT devices: I — {].‘ 2
Links Uplink Server ;

@; E?' loT Devices

ts

% Set of Trajectory points: P = {1,2,--

+* Set of UAV-BSs:

U={1,2,.

Fig. 1: System Model for Heterogeneous Unmanned Aerial
Networks with Edge Computing

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and

kyunc uge Energy-Efficient UAV Navigation Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on
U ST Intelligent Transportation System, Early Access
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Channel Model

* Probability of LoS and NLoS between UAV-BS and loT device:

1
T+aexp(—a(22O0.—a))’ LoS channel,
_ 1
1 1+ exp(— (13{: 0. _ “}}] . NLoS channel.

* Path Loss in decibel (dB):

Elevqﬁon Angle

/Distance between UAV and UE

1L
P!

|

20 log( Sty L e ]

20 log(

417}: 0;

2) + &,

+ €, LoS channel,
oS channel.

* Signal to Interference pulse noise ratio

Attenuation factors

BS:

e DT«
KYUNG HEE

. ¢
- —Pr (10710) 7!
Received signal power at UAV- Tip\t) = pr + o2

Interference

/

/ ¢
e’ i'ph
IE'P - ZP’E'P Zu’eu E{’EI Pﬁ,p,(lo 10 ) 1

X
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Channel Model

* Channel capacity at time ‘t’: Total loT devices
Total bandwidth ~

I//g + !tp f ):' if '}*;fp(f) = YVth;
f(0) =1 [T
1p

0, otherwise.

* The received power at ground BS ‘b’ from UAV-BS ‘v’ as:

A . . C » Distance between UAV-BS and round BS
__ T T rT
Fou = \b’“ GK (I;b (4W§b5uf;m

v

mmWoave carrier frequency

Transmit power of UAV-BS Antenna gain of transmitter and
receiver

* The channel capacity between UAV-BS and ground BS :

ammW ave Pb u \/ - 2 o 2
mmWave t) = 3{) U ]'Dg (]— + gmmWave ;2 )} 61;,.!] — (Iﬂ. 'Ib) + (’yu yﬁ)
'.T'b U ( ,) = ) b,u
0, otherwise.
&+ KYUNG HEE (K(\
UNIVERSITY Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV NE:;:R;(/.NG

Naviaation Optimization: A Deep Reinforcement Learning Approach. IEEE Transactions on Intelliagence Transportation System. Early Access INTELLIGENCE LAB



Channel Model

* Transmission energy of UAV-BS while using backhaul link at time t:

Er;n-mﬁf’mm (f) — >< Ti;niinﬂf ﬁ’i}ﬂ(t)'

* Total mobility energy cost of UAV:

Eu(t) = 6u(t) X Eprop. "

— \/h,ﬁ T ||ﬂfﬁ»)2 ,0<t<T. |« Horizontal Distance

Eprﬂp — kl

a: acceleration, v: velocity, g: Gravitational acceleration
* The total energy efficiency for UAV-BS covers trajectory points to serve loT devices over

2
V|3 + ||U|| (1 + ”;U ) — UAV propulsion energy

times T:
T |'-D| mmﬁ‘ave |Z|
2Py = 303 VB0 + By (0)
Emmﬂ"avzﬂ( ) (t)) ’
t=1 p=1 ) + By (11)
.
A\ ))
K%HE&HEE Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Ng‘gzm

Navigation Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on Intelligence Transportation System, Early Access INTELLIGENCE LAB



Problem Formulation

arg max E N(Pu,u), (14) | Maximize Energy Efficiency of UAV-BS

{Pu }uEM ucld
subject to

ﬂ P, ={b},Vu e U/, (15) | Non-Overlapping trajectories of UAV-BSs except ground BS
ueld

U Py =P,Vuel, (16) | Al trajectories points are covered

ueld
’f}('pu) > Mhn, VU €U, (17) | Energy Efficiency constraint

A A th
Ap(Pu) < Ay*,Vp € Pu\{b}. (18) | Aol constraint
KXI’JEJI}\IEIIT{‘EE Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV (&/
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Proposed Solution

* We deploy the Deep Q- Learning to solve problem (14)

Energy Efficiency Average Aol for navigation optimization

* The state space for trajectory:

{St - pcurrcnt?pﬁﬂd???? ITI' E [0 nth] ‘& E []- Ath]}

/ N\

Current Positions Target Position
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Proposed Solution

* The action space of UAV-BS is the trajectory planning each of the UAV-BS’s navigation from

one feasible state (i.e., position) to the next state while satisfying the trajectory and

communication constraints.

* The learning agent selects an action a; from the available actions upon state s;:

(4 & A‘,t - A, ./4 — {H'la ce ,ﬂ-U} = {Pu}'uEM

* At each state transaction, the agent receives the immediate reward which is used to form the
trajectory control policy for navigation:

Reward «

KYUNG HEE
; ) UNIVERSITY

aq1(ay ), if contraints (15)-(18) of (14) are true,
—a1, 1f contraints (15)-(17) of (14) are violated,

0, 1if contraints (15)-(18) of (14) is violated.
(19)

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV
Navigation Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on Intelligence Transportation System, Early Access

N
W) -:f/"

NETWORKING
INTELLIGENCE LAB



* The objective of the learning agent over T time slot is fo maximize the future reward:

T
R(s,a;t) = Z Y(to) x Re(t —to), (20)|  reflecting the trade-off between
to=0 the importance of immediate and

future rewards : [0, 1]

Proposed Solution

* Q-function or action value function is defined as: Transaction probability

Q‘JT(S:(].) _ ﬁ(ea} +’}’ZI:’_£V+W—65%,/(ZT)——’ Discounted cumulated state function

sES T<«— Control policy

* Goal is to obtain the best control policy. Therefore, the maximum Q-function is:

opt

Q" (s,a) = E[R + 7 max Q'”Opt (s',a")|s, a.] , (22)

Vﬂopt(s) = max [Qﬁopt(& a)].

Learning rate

* To derive the optimal control policy, the Q- funﬁx{ion is updated as:

Qt" (S: (1) — Qt(sa {'I-) + %(R + f\f [ HE}X Qt(S,a (I-!)} - Qt(sa a)):
(24)

"
V84 Q,Q )
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Proposed Solution

Algorithm 1: DQN with experience replay for UAV-BS 16 Step 3: Testing UAV-BS trajectory policy for
Trajectory Policy Optimization for Navigation UAV-BS navigation
1 Step 1: Initialization 17 Load the stored Q-network of Step 1
2 Initialize Q(s.a;0), M, target DQN parameters 6~ and 18 Retrieve R; of the UAV-BSs at time slot ¢
construct DON 19 Retrieve and select joint UAV-BS action
Step 2: Training DQN with experience replay ay = maXg, Q)Wwt (s¢,a;0)
fore=1,---,F do 20 Update trajectory of UAV-BSs based on joint action
Initialize S index and target values of DQN
fort=1,--- .17 do
Calculate the energy efficinecy metric of the
UAV-BSs using (11)
Calculate instant reward R, using (19)
Select action a; with given probability e.
Observe instant reward R; and next state sy L(0) = IE(_S_(,_,.,.S.,)NU(M)[(R Ty max 07" (. a1 0)
Store experience (s¢, Sy, ay, Ry, Ry) in the ‘
experience replay memory M - Q(S"’;f’))z] (24)
Randomly sample minibatch of experiences from
M , ' , hl Building Q- Network I
Adopt stochastic gradient descent (SGD) to train
the DQN using loss function in (24)
Update ¢ and Q(s,a;#)
Store the Q-network
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Numerical Results

—8— DON with replay meamaory
—M|- Greedy
1.2 1 --¥- Baseline DQN L 4
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Average cumulative reward
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Number of Trajectory

Fig. 2: Average cumulative reward comparison between the proposed
approach and the baseline approaches over different numbers of
trajectory way-points.
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Fig. 4: Average energy efficiency comparison between the proposed
and the baseline approaches over different number of trajectory way-
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Fig. 5: Average bandwidth efficiency comparison between the pro-
posed and the baseline approaches over different number of trajectory

points. way-points. .
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* We focused on developing the UAV-BS navigation policy to improve data
freshness and accessibility to the loT network.

Summary

* An agile deep learning reinforcement with an experience replay model that is
well-suited to solving the energy-efficient UAV-BS navigation problem under
trajectory and Aol constraints

* The numerical results also confirmed that effectiveness of the proposed DQN
with experience replay memory under different network conditions
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Challenges and Ongoing Research
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Challenges and Ongoing Research

* Currently, researchers in both academic and industry are trying to deploy not only UAV-
Assisted wireless network but also integrate Space-air-ground (satellite-UAV-BS) network
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Challenges and Ongoing Research

* There are still several challenging issues which are under unexplored:

The optimal deployment of UAVs to get the maximum coverage area and strong wireless
signal strength with low co-channel interference.

* Controlling the trajectory of the UAVs to make sure the safety distance between UAVs and the
optimal resources (i.e., bandwidth, and power) allocation to get the maximum data rate by
taking into account the energy constraint of the UAVs.

* Considering the optimal user association with the UAVs to achieve the highest rate.

* Space-Air-Ground channel modeling.
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Thanks for your attention!!!
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