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Introduction: Motivation of federated learning

“Data is the New QOil”

KHu

Data is born decentralized

Billions of phones & loT devices
constantly generate data

Data enables better products and
smarter models

Data processing is moving on
device

Improved latency

Works offline

Better battery life

Privacy advantages
Al-powered mobile processors
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Introduction: Motivation of federated learning

Performance Review of all Mobile SoCs with Al capabilities

The performance of mobile Al accelerators has been evolving rapidly in the recent years, nearly
doubling with each new generation of SoCs. The current 4th generation of mobile Neural Processing
Units (NPUs) is already approaching the results of CUDA-compatible Nvidia graphics cards presented not
long ago.

140

120

100

80

60

__________________________________________
20

1
1 1
1
1 Exynos Exynos : Intel i7 GeForce 1| MediaTek Qualcomm  HiSilicon Exynos HiSilicon Qualcomm ! Inteli7 1 Unisoc HiSilicon | GeForce Inteli7 I HiSilicon ! Nvidia GeForce  GeFarce
| 8895 9810 ! 3770k  GT710 | HeloP90 SDM 845 Kirin970 9825  Kirin980 SDM 855+ | 6700K | T710  Kirin810 ) GT1030  9700K | Kirin 990 | Teslak80 GTX960 GTX 1060

L 1 - e 1 L__.\:__
Huawei P40 Pro

I(I-'U http://ai-benchmark.com/



Introduction: Motivation of federated learning

Don’t use data to
improve products
and services

It's easy to learn if data is in one place...

model

data client

request

prediction

feedback

Log data centrally

Centralized data
analysis and
learning

Federated
analysis and
learning




Introduction: Motivation of federated learning

...but centralization has disadvantages

data client

O

user experience
e latency
e Offline
resource limits
e data caps
e Dbattery life
privacy concerns
e sensitive data

server

1)




Introduction: Motivation of federated learning

. G Making every phone smarter with Federated Learning

) 0:06/1:04 - Intro B 2 Youlube

https://youtu.be/gbRJPa9d-VU
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Introduction: Motivation of federated learning

Federated Learning on Pixel Phones

Google Al

Under the hood of the Pixel 2:
How Al is supercharging
hardware

b

-

~

Federated Learning are used to improve
several Google products.
Replace hard-coded ranking system with
a model trained on mobile phone usage
Each phone contributed improvements
to the global model without sending any
training data to Google’s servers
Keep data from user interaction with the
phones in private

/




Federated Learning: Introduction

Federated learning

combined
updated model
-ﬁﬂﬂﬂﬂ. 55 '
initial model. E ® S8/
———engineer

Google



Federated Learning: Introduction “
g Gboard: language modeling

Highest-probability
e Predict the next word based on typed text so far Second candidate candidate

Third candidate
) = ° I love you >
e Powers the predictions strip svs

>  somuch too and )

ql W2 e3 r4 t5 y6 u? iB 09 p(l
When should you consider federated learning?
asdf gh j k |

e On-device data is more relevant than

server-side proxy data ¢ zxcvbnma@a

t i a 13 7123 © S English _
e On-device data is privacy sensitive or large e
- Fig. 1. Next word predictions in Gboard. Based on the con-
. LabEIS can be Inferred natura”y from user text “T love you”, the keyboard predicts “and”, “too™, and “so
interaction e

Google

KHu



Federated Learning: Introduction

&g Gboard: language modeling
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Training round

Server-trained model Federated model
compared to baseline compared to baseline

Federated RNN (compared to prior n-gram model):
A. Hard, et al. Federated Learning for e Better next-word prediction accuracy: +24%
Mobile Keyboard Prediction. e More useful prediction strip: +10% more clicks
arXiv:1811.03604

KHu




Federated Learning: Introduction

Characteristics of federated learning

vs. traditional distributed learning

Data locality and distribution
e massively decentralized, naturally arising
(non-1ID) partition
e Datais siloed, held by a small number of
coordinating entities
e system-controlled (e.g. shuffled, balanced)

Data availability
e limited availability, time-of-day variations
e almost all data nodes always available

Addressability
e data nodes are anonymous and interchangeable

e data nodes are addressable
Node statefulness

e stateless (generally no repeat computation)
e stateful

KHu

Node reliability .
e unreliable (~10% failures) O
e reliable O‘\\‘ ~__.0
Wide-area communication pattern /
O O

e hub-and-spoke topology
e peer-to-peer topology (fully decentralized)
e none (centralized to one datacenter)

Distribution scale
e massively parallel (1e9 data nodes)
e single datacenter

Primary bottleneck
e communication
e computation



Centralized /Distributed /Federated Learning
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Federated Learning: Introduction

* Unique characteristics of Federated Learning
* Non-lID
= The data generated by each user are quite different

* Unbalanced

= Some users produce significantly more data than others

» Massively distributed

= Training data is stored across a very large number of devices

 Limited communication

= Unstable mobile network connections




Federated Learning: Formulation

 Recall traditional learning problem

o For a training dataset containing n samples (x;,y;), 1 < i < n, the training
objective is:

min, f(w) where  f(w) & ~ ¥, fi(w)

filw) = l(x;,y;,w) is the loss of the prediction on example (x;, y;)

o Deep learning optimization relies on SGD and its variants, through mini-batches

W1 < We — NV (We; X, Vi)

KHu



Federated Learning: Formulation —

* Federated Learning problem

o Suppose n training samples are distributed to K clients, where P}, is the set of
indices of data points on client k, and n;, = |Py|.

o For training objective: min f(w)

ny 1
Algorithm 1 Federatedhveraging. The K clients are f(W) = I.’g=1 e FR(W) where Fk (W) e — EEEPR fi (W)
indexed by %: B 1s the local mimbaich size, E 1s the number L Nk
of local epochs, and 7 is the learning rate.

SECTE exstulin: . Local loss function
initialize wo Global loss function ]
foreachroundt =1.2,... do at each client k
m + max(C - K. 1) |
5S¢ + (random set of m clients) ‘L L
for each client k £ 5; in parallel do
Wy ElicnlUpdatef ke, wy) Linear regression Support vector machine
Jacisi e Il_ Rk, :;"J_ 1 _ T
Wiy ZI._J oWy f;(w):_(xl?"w_yi)z,yie {0’1} ﬁ(W)—{O,l—ylxl W}’yi e{_l,l}
ClientUpdate(k, w): /| Run on client k 4 2 )

B + (split Py into batches of size B) Igg?gg?gﬁ
for each local epoch ¢ from 1 to E do
for batch b = B do
w4+ w — nVE{w; b)
retumn w to server

yperplane

; A iy g i o
The Federated Averaging Algorithm

0.2 0.4 0.6 0.8 1.0 %,

KHu



Federated Learning: FedAvg Algorithm

Federated Averaging
A | g O I’I’[h M Server computes | (another)

overall update using :
a simple weighted | COMbined

average. model

data device Devices run multiple

steps of SGD on their
local data to compute
an update.

N (another)

initial model

i @ kX

efgineer
Google &



Federated Learning: FedAvg Algorithm

Federated Averaging

. Typical orders-of-magnitude
Algorithm
100-1000s of users per round
. 100-1000s of rounds to convergence
data device

1-10 minutes per round

M (another)
initial model T . b

engineer
Google g



Federated Learning: FedAvg Algorithm

The Federated Averaging algorithm

Server

Until Converged:
1. Select a random subset (e.g. 10860) of the (online) clients

2. In parallel, send current parameters 8_ to those clients

Selected Client k

. Receive 8, from server. FedSGD: 1 step

. Run some number of minibatch SGD steps,
producing 6'

. Return to server.

H. B. McMahan, et al.
Communication-Efficient Learning of
Deep Networks from Decentralized
Data. AISTATS 2017

6, + data-weighted average of client updates




Federated Learning: FedAvg Algorithm
Using the convolutional model for CIFAR-10

1.0 T T T I I
G5 i A i S =~ Updates to reach 82%
pe e -y B
> iy T g SGD 31,000
© 0.6 e T 4% A FedSGD 6,600
-]
E o b FedAvg 630
)
9]
2 0.4 FedAvg, =0.05 - decrease in
~—— FedAvg, =0.15 49X communication
— FedAvg, =0.25 (updates) vs SGD
0.2 FedSGD, n=0.45 |
: — - FedSGD, =0.6
| . T FEdsﬁ;D' n=0.7 (IID and balanced data)
0 500 1000 1500 2000 2500 3000
Communication Rounds H. B. McMahan, et al.
Communication-Efficient Learning of
G | Deep Networks from Decentralized
oogle Data. AISTATS 2017



Federated Learning: FedAvg Algorithm

Large-scale LSTM for next-word prediction

Dataset: Large Social Network, 10m public posts, grouped by author.

Test Accuracy

0.14
0.12
0.10
0.08
0.06
0.04
0.02 FedSGD FedAvg (E=1) FedAvg (E=5) _
n=6.0 n=3.0 n=3.0
0.00 n=9.0 n=6.0 n=6.0 4
— 7=18.0 — 1=9.0 - = 1n=9.0
— =22.0 — 1n=18.0 - - n=18.0
| | I |
0 200 400 600 800

Communication Rounds

1000

Rounds to reach 10.5% Accuracy

FedSGD 820
FedAvg 35

23X

decrease in
communication
rounds

H. B. McMahan, et al.
Communication-Efficient Learning of
Deep Networks from Decentralized
Data. AISTATS 2017



Federated Learning: FedProx Algorithm

FedProx:

2
Modified Local Subproblem: min F;(w;) +% H Wi — w! H
Wi
a proximal term

« The proximal term explicitly limits the impact of heterogeneous local updates
» Don’t drop stragller devices: instead [safely] incorporate partial work

» Generalization of FedAvg and is more stable in the heterogeneous setting

Synthetic - MNIST & FEMNIST Shakespeare Sentl40

1.0/

= N W B

0.5 \ :'=\_'.'_"'|-5. v St g e 4 st

L L R LY
T e U L

50 100 150 200 0 20 40 60 80 100 0 50 100 150 200 0 10 20 30 40 0 200 400 600 800
# Rounds # Rounds # Rounds # Rounds # Rounds

- FedAvg FedProx, u = 0 : - FedProx, ;1 > 0

I(l-l U Li, Tian, et al. "Federated optimization in heterogeneous networks." arXiv preprint arXiv:1812.06127 (2018).




Federated Learning: Adaptive FL Algorithms

FedAdagrad (Momentum based algorithms)

Algorithm 3 FEDADAGRAD
Initialization: zo, 7 > 0 and v_; > 72
fort=0,---,7T —1do

Sample subset S of clients
t

for each client 7 € S in parallel do
fork=0,---,K —1do Local SGD
Compute an unbiased estimate g; ,, of VF;(x] ;) updates at
t "
Send the changes in local models Ex_i_,k_fﬂ = Tik— MY k clients
to the server for aggregation i — Ti g — Tt
Momentum based update v = vi1 + AF Adagrad updates on
. A
Tt+1 = Tt + 1 7557 model delta at server

K"lU Reddi, Sashank, et al. "Adaptive Federated Optimization." arXiv preprint arXiv:2003.00295 (2020).




Federated Learning: Adaptive FL Algorithms

FedYogi and FedAdam (Momentum based algorithms)

Algorithm 4 FEDYOGI (and FEDADAM )

Initialization: zo,v_, > 72, decay 32 € (0,1)
fort=0,---,T—1do

Sample subset S of clients

Ti o = Tt

for each client7 € S in parallel do
fork=0,--- , K—1do

Compute an unbiased estimate g:?, ., of VF; (:r:z E)

Local SGD updates

2t =2t —met, at clients
3?: =T, g — Tt-1
At — % Zq‘r:.ﬁ'.' AE
v =vio1 — (1 - B2)A7 sign(ve—1 — A}) (FEDYOGI) Adam/Yogi updates
Momentum based update\‘_ _ . e
vy = Pavy_1 + (1 — B2) A2 (FEDADAM) on model delta at
Tei1=Tp + Wﬁ‘; server

the momentum term is a weighted sum of the previous gradient updates; B1, f2: Momentum parameters; 0.9, 0.99

K"lU Reddi, Sashank, et al. "Adaptive Federated Optimization." arXiv preprint arXiv:2003.00295 (2020).




Federated Learning: Adaptive FL Algorithms

CIFAR-100
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Federated Learning: Differentially Private Algorithm

Enhancing the security and privacy of FL

+ A EJ@
3 % A +/\ R

O

Secure Aggregation [1] AT @
Add pair-wise mask to local models + f \

Cancel out masks for the aggregated sum

Google
Differential Privacy [2]
Add Gaussian noise to local models
Still allowing for accurate statistical analysis of the data as a whole. Preserve the reversed engineering

[1] K. Bonawitz, et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning.” CCS 2017.
Kl'lu [2] H. B. McMahan, et al. “Learning Differentially Private Recurrent Language Models” arXiv preprint arXiv:1710.06963 (2017).




Federated Learning: Differentially Private Algorithm

Accuracy of noised models vs baseline
I T

i ' | | __— Non-private baseline

017 | I Differentially Private with 764k users
0.16 |

0.15}

W

baseline

o =0.012, S=20 |
o = 0.006, S=10
o= 0.003, S=15 |
o = 0.006, S=15
o =0.012, S=15
o= 0.024, S=15

0.14

AccuracyTopl

0.13

]
i
i

0.12

0.11 . ' .
2000 3000 4000 5000

communication rounds

0 1000

Figure 1: Noised training versus the non-private
baseline. The model with 0 = 0.003 nearly
matches the baseline.

H. B. McMahan, et al. “Learning Differentially Private Recurrent Language Models” arXiv preprint arXiv:1710.06963 (2017).




Federated Learning: Implementation

TensorFlow Federated (TFF): Machine Learning on Decentralized Data

sensor_readings
(an input)

threshold
(aninput)

tff.federated_map

* without the need to share the data with a central server.

K"lU https://www.tensorflow.org/federated/




Federated Learning: Implementation

Round i Round i+1
e N ik =l
Selection Configuration Reporting ! Selection Configuration Repo...
. jL_ Training | ; )“
i ! .
. [ Training(4 : : [ Training — >
Jr y‘k I I
1 ] ¥
. 4L_Training } i X
f BER:
' : - [ Trainin —
ARRREINC R
I
. . % : ! [ Training —
{ ! f I i
5; ggregation | : L ¢ \ >
I
]

' Device
O Server

i Persistent storage

¥ Rejection (“come back later!”) @

i‘w\f Device or network failure

Devices check-in with the FL server,

rejected ones are told to come back later

Server reads model checkpoint from

persistent storage

Model and configuration are sent
to selected devices

Figure 1: Federated Learning Protocol

On-device training is performed,
model update is reported back

@ Server aggregates updates into
the global model as they arrive

Server writes global model

checkpoint into persistent storage

Bonawitz, Keith, et al. "Towards federated learning at scale: System design." arXiv preprint arXiv:1902.01046 (2019).




Federated Learning: Ongoing Research Problems

KHu

Approaches that scale FL to larger
models, including model and gradient
compression techniques

Novel applications of FL, extension to new
learning algorithms and model classes.

Theory for FL (i.e., convergence analysis)

Communications for FL (e.g., resource
allocation, scheduling, etc)

FL for communications (e.g., Federated
Deep Refinforcement Learning for
offloading, caching, etc)

Enhancing the security and privacy of FL,
including cryptographic techniques and
differential privacy

Bias and fairness in the FL setting

Not everyone has to have the same model
(multi-task and pluralistic learning,
personalization, domain adaptation)

Generative models, transfer learning, semi-
supervised learning




Federated Learning: at the Edge

( Model Aggregator )

Updating Global Model

\ 4

Global Model

I |
|
I
oo - sending Global Model I S S U ——— I
a"® » 1 Sending Local Models
OS0!l '@ == == S N N S S S S S S .

Global Model Generation

Federated
Learning

Models
)
I. ) |
=T

- J

Deployment scenario at the edge
KHu



Federated Learning: at the Edge

* The under-explored resource allocation for the Federated Learning scheme:
= The uncertainty of wireless channels
= UEs with heterogeneous power constraints
= The difference in local training data size

» Contributions of [1]:
» Formulate a Federated Learning over wireless network problem, namely (FEDL)
= Decompose the non-convex FEDL problem and transform it to three convex sub-problems and
obtain the globally optimal solution
» Trade-off between computation and communication latencies determined by learning
accuracy level
» Trade-off between the Federated Learning time and UE energy consumption.

[1] Nguyen H. Tran, Wei Bao, Albert Zomaya , Minh N.H. Nguyen and Choong Seon Hong, “Federated Learning over Wireless Networks: |
i Optimization Model Design and Analysis,” /EEE International Conference on Computer Communications (INFOCOM 2019), April 29 - May 2, 2019, :

' Paris, France



Federated Learning: at the Edge

Ilterative Process

KHu

problem

—> Step 1. Local Computation: Every UE needs to solve the local learning 1. Localcomputation

P ¢ R I
u,y, ! = mgnnﬂnf,!

(”,” (1), ’\?.I“‘”)

with the local error 0<6<1 Parameters
Step 2. Transmit Leqrning Parameters: UEs send their weight parameters A_l"liff'lé
t . . .
( ) , the gradient \7] 'ro the controller via a shared wireless environment 3. Update Global Model

(TDMA for uplink).

2. Transmit
Learning
Parameters / UE 2
4. Update Learnin

UE3

Federated Learning Scheme

Step 3. Update Global Model: The local model parameters and gradients are
aggregated at the controller

1 N
W(t+1) - Z w
N n=1

)

n

broadcast to all UEs.

— Until a global error 0 < g <1

is achieved.

1 N
(t+1) __
VJ - W ZnZI

VJ(t)

|__Step 4. Update Learning Parameters: These updated learning parameters then are



Federated Learning: at the Edge

* Convergence analysis for number of global rounds and local interations

* Consider an iterative optimization algorithm A is used to solve local learning problem, then
the overall learning time
TIME(A, ) = K 4(€,0) x (¢ + Ta(6)),
¥ N~

#global rounds Communication Computation

* According to [1], the general bound on the number of global rounds is

O(log(l/g)) Normalize K 1
0)=——
2 » 0)=—

K(&,0)=

where controllable local error 8 given the relative global error €.

* The number of local iterations is upper bounded by O (log(1/ 8))

' [1] C. Ma, J. Konecny, M. Jaggi, V. Smith, M. I. Jordan, P. Richtarik, and M. Takac, “Distributed Optimization with Arbitrary Local

l(l'lu ' Solvers,” Optimization Methods Sofiware, vol. 32, no. 4, pp. 813-848, Jul. 2017.



Federated Learning: at the Edge

* The proposed FEDL optimization problem

» Minimizing the UEs’ energy consumption and learning time

N |

FEDL:

S.L.

min.

K(H) [Eglob(fa T, 9) + & Tglob(Tcmpa Tcom: 9)]

(13)
N —

> T < Teom, (14)
5D _

max = Tonn, (15)
ft < fo < fRT, VR e N, (16)

P < D (80 /Th) <P Yn e N, (17) =

| .. .
—‘| Communication Time

| — . .
] Computational Time

—/‘| CPU cycle of UEs

_— A
"‘| Transmission power

0<6<1. (18)

Local error

D, : a local data set

c,, : the number of CPU cycles for UE n to execute one sample of data

S, : signal strength (watts or dBm)

KHu
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Federated Learning: at the Edge

« Solution Approach

* The non-convex FEDL problem is decomposed into three convex subproblems and obtains
closed-form solutions

2 o cmp
SUB1: min. anl B i (19)
CPU-cycle control )) 4 s.t. Cnff" < Temp, YR EN, (20)

frm < f < fme yne N, (21)

N
SUB2: min. »_ _ E™() + KTeom (22)
Uplink power control » ZN < (23)
T.!,Il T’i’l — COom

S.L.

P < pp(Sn/Ta) < PR, Vn € N. (24)

SUBS3:
Local accuracy control ») [min. E(Q) [ Bt (77" 8) + 6 Tgtop(Toyrgs Lo B))
s.. 0<0<1. (37)

L Theorem 1. The globally optimal solution to FEDL is the combined solutions to three sub-problems SUB1, SUB2, and
SUB3.

KHu



Federated Learning: at the Edge

» Federated Learning for Task and Resource Allocation in Wireless High Altitude Balloon
(HAB) Networks

MEC-enabled HAB MEC-enabled HAB

K Support vector machine (SVM)-baseh
federated learning (FL) algorithm method
enables each HAB to cooperatively build

‘ an SVM model for proactive user
Q R associations.

 Without any transmissions of

/ B } LR Sl e historical user association results nor
’ AL - of the data size of the task requested
- v 7 . - To
4 T—‘ T \I‘ 104 )-\;5 | : Give.n the association decision,. the
'( -ﬂ--‘.}; iy s | i e service sequence and task allocation of
l,__,_'_ Y 445 i each user can be optimized to minimize
_____ User" User i A4

the weighted sum of the energy and time

\ consumption.

i [1] Wang, Sihua, Mingzhe Chen, Changchuan Yin, Walid Saad, Choong Seon Hong, Shuguang Cui, and H. Vincent Poor., “Federated Learning for Task
Kl.lu + and Resource Allocation in Wireless High Altitude Balloon Networks,” IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 24, DECEMBER 15, 2021

_________________________________________________________________________________________________________________________________________________________________________

SVM : Finding the optimal decision boundary in the space by maximizing the
margin.



Federated Learning: at the Edge

» Federated Learning for Task and Resource Allocation in Wireless High Altitude Balloon
(HAB) Networks

MEC-enabled HAB MEC-enabled HAB

@

30
[ Optimal solution
[ |Proposed SVM-based federated learning

o5 | [ SVM-based global learning i
[ SVM-based local learning
[ |Delay

Energy consumption

MEC-enabled HAB

2 ¢

/ \ I \ / \ Directional
$ . > 1 . mmWave

]
o

Utility function

10

E, 5 2 2

n gl = 5 ¥
lEl Ji i ¢ % |
4 BB 1B - el 15
| L_ i 0 = z ek

Ij. 18 20

N Number of users

[1] Wang, Sihua, Mingzhe Chen, Changchuan Yin, Walid Saad, Choong Seon Hong, Shuguang Cui, and H. Vincent Poor., “Federated
Kl'lU Learning for Task and Resource Allocation in Wireless High Altitude Balloon Networks,” arXiv:2003.09375, March 2020.



Federated Analytics

Beyond learning: federated analytics

» Federated analytics is the practice of applying data science methods to the analysis of raw data
that is stored locally on users’ devices.

 Like federated learning, it works by running local computations over each device’s data, and only
making the aggregated results - and never any data from a particular device - available to product
engineers.

» Unlike federated learning, however, federated analytics aims to support basic data science needs.

Federated quantile estimation

Federated counting of distinct elements or events
Federated histogram estimation over closed sets
Federated heavy hitters discovery over open sets
Federated density estimation of vector spaces
Federated selection of random data subsets
Federated SQL?

etc...

definition proposed in
|(|-|U https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html



Federated Learning: Summary

* Al is moving towards edge devices with the availability of massively distributed
data sources and the increase in computing power for handheld and wireless
devices.

* In Federated Learning (FL), on-device learning agents collaboratively train a
global learning model without sharing their local datasets.

* The mainstream research of FL is proposing new algorithms to improve both
theoretical and practical performance following their theoretical convergence
analysis.

* FL is applied in a variety of mobile and edge devices applications.

e Communications for FL and FL for communications networks are our current
research interests.

KHu
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Democratized Learning: Introduction

Challenges of conventional FL scheme

= Large-scale, unbalanced, and highly personalized data is extremely
challenge in practice such as hand writing and voice recognition
applications
* Limited number of samples in the local data

* Heterogeneity of labels data in classification problem

* Limited information (e.g., partial observation) about the environments

®" The personalized learning performance at each learning agent can be
declined (negative impact) due to inappropriate aggregation among
exceedingly different learning agents characteristic

= The conventional FL cannot handily resolve the underlying cohesive relation
between global and personalized performance

KHu



Democratized Learning: Introduction

KHu

Motivations of Democratized Learning Philosophy

= Hierarchical structure of social or many complex systems

= Individuals cultivate personal objectives, skills and interact with each other to form many

levels of social groups

®= The higher-level and larger groups have more capabilities to solve complex problems

via the collective contributions of their members

a .:‘-'3;] Board of Directors J

Product 1

y ‘% ¢ Regional
} 1 Director 1

Product 2 _Product 3

& Regional f f !
Director 2 L\

Regional
Director 3

W / Global Learning
=y A\ Mode

]

| Group Model 3

Group 2
Representative

Group 3
\¢°"//Representative

( ‘I Specialist 3.1

AN
e j Specialist 3.2

Specialist 1.1
Specialist 1.2
Specialist 1.3

\ Specialist 3.3

Fig. 1: Analogy of a hierarchical distributed learning system.



Democratized Learning: Introduction

Motivations of Democratized Learning Philosophy

» Unique features of the democracy in future distributed learning systems

" According to the differences in their characteristics, learning agents form
appropriate groups that can be specialized for similar agents to deal with the
learning tasks

* Learning agents are free to join any of the appropriate groups and exhibit equal power
in the construction of their groups’ generalized learning model.

= These specialized groups are self-organized in a hierarchical structure and
collectively construct the shared generalized learning knowledge to improve their
learning performance by reducing individual biases

* The power of each group can be represented by the number of its members which varies
over the training time.
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Democratized Learning: Introduction

Motivations of Democratized Learning Philosophy

= Recent neuroscience research studies the continual life-long learning capabilities
for a general artificial intelligence as in biological intelligence

* Generalization capabilities due to high synaptic plasticity level allow easier to adapt and
learn new knowledge

* Specialization capabilities increase the specific complex skills

» The duality of processes in distributed learning
" The generalized process
* The high-level of plasticity, the easier to change the group members
* Generalization broadens the knowledge by sharing among members
" The specialized process
* Specialized learning exploits the personalized data at learning agents

* Encourage a separation of groups due to the personalized characteristics
=> Groups become stable.
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Democratized Learning: Key Components

Concepts

* Definition: Democratized Learning (Dem-Al in short) focuses on the study of a dual (coupled
and working together) specialized-generalized processes in a self-organizing hierarchical
structure of large-scale distributed learning systems.

* The specialized and generalized processes operate jointly towards an ultimate learning goal
identified as performing collective learning from biased learning agents.

Philosophy of Democratized Learning
Democracy in Learning

» Specialized Process

 Generalized Process
Dem-Al Meta-Law

* Hierarchical structuring

Stability Force Plasticity Force .

Specialized Process Generalized Process

Specialized Learning Hierarchical Structure Generalization
(Self-organization)

Specialized .
Ghaus Group Group Knowlfadge Election/
Stability Plasticity Sharing Union

Learning

Personalized
Learning

e Y

Conceptual architecture of the democratized learning philosophy

M. N. H. Nguyen, S. R. Pandey, K. Thar, N. H. Tran, M. Chen, W. Saad, and C. S. Hong, “Distributed and democratized learning: Philosophy and 5
|(|-|U ' research challenges,” IEEE Computational Intelligence Magazine, Vol. 16, Issue 1, pp. 49-62, Jan. 2021.




Democratized Learning: Key Components

Democratized Learning vs Federated Learning

Democratized Learning Federated Learning

KHu

Structure

Performance

Learning
capabilities

Scalability

Others

Self-organizing hierarchical structure

Global, groups, personal local learning
performance

Specialization and Generalization
capabilities
Multiple learning tasks

Nature-inspired large-scale
Easier for decentralized management

Enhancing privacy and security based
on hierarchical grouping

Diversity of models, democracy in
learning features

Not fully analyze for hierarchical structures

More focus global model learning
performance

Algorithms are developed based on
convergence analysis of algorithms and
strong theoretical assumptions.

Personalization/ Generalization/ Global
performance

Large-scale
Centralized management

Distillation, Generative adversarial network,
Fairness, Meta-Learner



Democratized Learning: Key Components

Philosophy of Democratized Learning w

Plasticity-Stability

Transition Mechanism

Plasticity

Dem-Al
Meta-Law

Specialized Learning Mechanism |
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Fig. 2: Anatomy of Democratized Learning.




Democratized Learning: Key Components

* The self-organizing hierarchical structure of the Dem-Al system evolves
to adapt to the training environment.
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Fig. 4: The illustration of the transition in Dem-Al principle.
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Democratized Learning: Ongoing Research Problems

Edae-assisted Democratized Learnina

Global level: Cloud Data Center

-

Optional: update the Regional GM « “'--»:';1«-..‘__
to higher-level groups 7 T
Download updated GM S
/ o Sl Tl
rﬁ from higher-level groups @ S e
Regional level: MBS L
[. A® » | ] Aggregate Hierarchical
Regional GM clustering s
1“°
o Broadcast S
o o s --------
,ﬁe:*‘j&?_i“z é‘ hierarchical GM

: ‘3%% {ﬁ\“
w? |
SBS

Local aggregation

'\
Learnlng ~ Multi- connecm *

o - HE
EE

Personalized Level

* GM: Generalized Model
MBS: Macro cell eNodeB
SBS: Small cell eNodeB

: Fiber link
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Democratized Learning: Ongoing Research Problems

Edge-assisted Democratized Learning

* Decomposition of Edge-cloud Operation:
" Three steps of hierarchical aggregation in MEC servers at SBS, MBS, and Cloud.

= MEC server at MBS takes the role of a regional controller and a cloud server
acts as a global coordinator to manage this system.

= Regional edge learning using DemlLearn algorithm [2]

* Personalized Learning problem at each learning agent:

\ 4

K
1 5
PM, = min. (1 - B,)PLO(D,) +; ) WGM}{' ol <
h=1 ‘Yg.,n |
* Hierachical averaging to construct groups’ learning models (level k=1) Update groups
and regional learning model (level k=2) structure
N(k—l)
GM® = 3 £ _am{Y,

k)
ceC Né

PLO : personalized learning objective

__________________________________________________________________________________________________________________________________________________________________



Democratized Learning: DemLearn Algorithm

KHu

Algorithm 1 Democratized Learning (DemLearn)

I: Input: K,7', 7.

Local Model
Intializaiton

Local Learning

\‘ Hierrachical Clustering

2: for t—Oq..., —1do
3 for learning agentn =1,..., N do
4: Agent n receives and updates its local model from the higher-level generalized models
'wgll‘l, i ,w,,(,i? of its super groups as
o (0) 5: 1 o) %
wﬂ,t—i—l —_ (]‘ - ?6 ) n t + = B w,,. o where B = Z (k (6)
k=1 S’ -"‘1 Ng n
5 Agent n iteratively updates the personalized learning model wn” as an in-exact minimizer
(1.e., gradient based) of the following problem:
wite ~ argmin L) (w[D,) + 5 Z Sl — w7 )
A 1 9 n TJ‘
6: Agent n sends updated Iearning model to the server;
T end for
8: if (t mod 7 = 0) then
9: Server reconstructs the hierarchical structure by the clustering algorithm; 7
10: end if
11: Each group i at each generalized level k£ performs an update for its learning model as follows
N(k_—l)
(k) ¥ k_l) "
W11 = Z ;fk) 'wJE-._Hl ; (8)
€S,k X — . .
e ﬁ\‘ Hierrachical Averaging
12: end for




Democratized Learning: Ongoing Research Problems

Edge-assisted Democratized Learning

* Implementation of DemLearn algorithm is available at
https: //github.com /nhatminh /Dem-Al/

* Developing the device association and resource allocation for this system

DemlLearn DemLearn FedAvg
1.04 1.0 ’_"4‘ — = — 5 —— 5 —
0.8 308 e Es e | | |
E E ;f’r &n*—‘?‘—-—“—_‘-‘)‘-vv-
3 =] 7 e
2067 g 0671 / ] ',' . .
£ 2 1 ;
704 20474 i |
@ (3] I 1
= = y i
0.2 0.2 /’.
0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 O 15 30 45 60
#Global Rounds #Global Rounds #Global Rounds #Global Rounds
-+- Regional @ —— Client Specialization = —e— Client Generalization -«- Regional —— Client Specialization = —e— Client Generalization
(a) Experiment with MNIST dataset. (b) Experiment with Fashion-MNIST dataset.

Regional Dem-Al learning performance for 100 users..

[2] M. N. H. Nguyen, S. R. Pandey, D. T. Nguyen, N. H. Tran, E. N. Huh, W. Saad, and C. S. Hong, “Self-organizing democratized learning:
Towards large-scale distributed learning systems,” IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DOI: 10.1109/TNNLS.2022.3170872 i

K U T e



Democratized Learning: Ongoing Research Problems

Multi-language
Handwriting Recognition

@H=\ English Handwriting '//.a:w- Korean Handwriting
— Recognition o Gk Recognition
T
.
Reguonal Model-1 Reglonal Model-n

Fig. 7: An example of Dem-Al systems: Multi-language handwriting recognition.
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Democratized Learning: Ongoing Research Problems

Research Opportunities
= Develop a novel algorithm design for multi-task distributed learning setting
® Enhancement of privacy and security issues in distributed learning systems:

v’ Information exploitation: reverse the personal data
v Free-riding
v Model /data poisoning attacks
= Optimization design regarding the synergy of Resource Allocation and Learning
Performance
v’ Group structure changing

= Future Personalized Applications

v'Learn the unique features and personalized characteristics during the daily activities of
each user and make appropriate decisions

v'VR/AR services: regional edge intelligence is used to predict the future gaze direction,
motion, and mobility patterns, which are exceedingly different among users.
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Outlines

* Multimodal Federated Learning
* Introduction
* Key Components
* Ongoing Research Problems
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Multimodal Federated Learning: Introduction

What is multimodal learning ?

= A modality is just sort of a kind of data and we have achieved lots of

success in single modality: classify digits for MNIST, speech recognition with
audio waveforms

N P-—D IO
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WO 6 &Q &
N AR CND—NWEw
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LWW-sLGNYV LR

3
&
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£
/
q
g
2
]

VY AWwWnhoNua90 L

= Multimodal learning is a learning scheme that involves multiple modalities,
which can manifest itself in different ways:

* Input is one modality, output is another
* Multiple modalities are learned jointly

* One modality assists in the learning of another
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Multimodal Federated Learning: Introduction

" Most of the data we see in our daily lives is in multiple modalities at the same time.

Tags @
West Yorkshire
Landscapes  Brighouse
Hove Edge
Red Beck Valley  Trees
Autumn  Autumn Colour
" Nikon D40X  Woodland
- . . . .

On Flickr, A picture associated with some tags Woods 202
Calderdale
A YORKSHIRE DREAM

PlacesYouVisit ~ GoToPlace

| Gates @
October 17 at 213 AM - @

It's safe to say this was one of my favorite days. Jenn and Nayel, your
love is worth celebrating every day. Cheers to your first anniversary!

" On Facebook, you might see a post that has a text description and image.

= With the available of modalities data, we want to take advantage of it and study how can we
improve performance of downstream tasks.
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Multimodal Federated Learning: Introduction “

Motivation of multimodal federated learning
= Despite many advantages in preserving privacy, existing FL methods
consider a scenario where clients hold only single-modal data, restricting
the use of multimodal data in various equipment.

* loT applications often deploy different types of devices (e.g, smartphones,
smartwatches)

" The common features from multimodal data provides more accuracy and
robustness performance than single-modal data.

® The design for FL framework using multimodal data becomes more practical
where users own data generated from multiple data sources.
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Multimodal Federated Learning: Key Components n

Traditional FL vs Multimodal FL

Classifier for supervised training

Server

(o w:fl = .Mm-n‘-'ed/lv‘t_)(!fv:';l P w‘"jl Wk )
ﬁg ag &5 we
W ey W,
Server e o P e o X : Input data
m
[Wzgu = FedAvg(W,y \Wiyy s Wiy }] Kaorky ¥ é B. Y : Label
< .
® 3 h : Representation
\
We -
w:’ w:‘s w“‘a
2 3 o ° o o o °
Wit Wi w,ﬂ‘ w2 w!ﬂm
'
N /G = (&R ol toencodex /o o toencoden /x el toencoder
\r"/
[ = 3 [ = - c
£ 8 ¢ Hile MOF ©:le
% ER)vin § ot 3 EBDw, g D wes | Wesh
— V‘. “w
g 4 g
Client 1 Client 2 Client 3 Client 1 Client 2 Client 3

Federated Averaging (FedAvg) Multimodal Federated Averaging (MM-FedAvg)

Yuchen Zhao, Payam Barnaghi, and Hamed Haddadi. Multimodal federated learning on iot data. In 2022 IEEE/ACM Seventh
KI-lU '\ International Conference on Internet-of-Things Design and Implementation (loTDI), pp. 43-54. IEEE, 2022



Multimodal Federated Learning: Key Components
Main Components

. _Encoder

Decoder _
==

(a) Autoencoder (b) Split autoencoder (¢) Canonically correlated autoen-
coder

Figure 2: In an autoencoder (@)} an encoder f maps input data X into a hidden representation A. A decoder g maps h into a
reconstruction X”. In split amoem:oders for aligned input (X 4, X ) from two modalities, data from one modality are input
into its encoder to generate an /i, which is then used to reconstruct the data for both modalities through two decoders. In a
canonically correlated autoencoder data from both modalities are input into their encoders to generate two representations.
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(a) Multimodal local training. (b) Multimodal FedAvg

Figure 3: During local training clients only update the f and g that are related to the modalities of their data. When
conducting multimodal FedAvg((b){on the server, only the updated parts of each local model will be aggregated.

Yuchen Zhao, Payam Barnaghi, and Hamed Haddadi. Multimodal federated learning on iot data. In 2022 IEEE/ACM Seventh
International Conference on Internet-of-Things Design and Implementation (loTDI), pp. 43-54. IEEE, 2022
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Multimodal Federated Learning: Ongoing Research Problems

Research Opportunities

" Develop a novel design for multimodal FL setting with more modalities and more
powerful backbone models.

" Develop the edge Al mechanisms for multimodal FL
v’ Large model is not practical for on-device learning

v Can be applicable for more downstream tasks (vision, language tasks).
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Conclusior

* We have explored state-of-the-art distributed learning frameworks such as
Federated Learning, Democratized Learning and Multimodal Federated
Learning to provide solutions for large-scale private and personal learning
services

* We have introduced several federated learning algorithms, reference
implementation, and applications

* We have introduced concepts and an initial implementation of democratized
learning

* We have introduced distributed learning frameworks in a variety of research
domains and applications.
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