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Abstract— We consider the problem of a user querying for in-
formation over a sensor network, where the user does not have
prior knowledge of the location of the information. We consider
three information query strategies: (i) a Source-only search, where
the source (user) tries to locate the destination by initiating query
which propagates as a continuous time random walk (Brownian
motion); (ii) a Source and Receiver Driven “Sticky” Search, where
both the source and the destination send a query or an adver-
tisement (both propagating as random walks), and these leave a
“sticky” trail to aid in locating the destination; and (iii) where
the destination information is spatially cached (i.e., repeated over
space), and the source tries to locate any one of the caches. After
a random interval of time with average t, if the information is not
located, the query times-out, and the search is unsuccessful.

For a source-only search, we show that the probability that a
query is unsuccessful decays as (log(t))−1. When both the source
and the destination send queries or advertisements, we show that
the probability that a query is unsuccessful decays as t−5/8. Fur-
ther, faster polynomial decay rates can be achieved by using a fi-
nite number of queries or advertisements. Finally, when a spa-
tially periodic cache is employed, we show that the probability
that a query is unsuccessful decays no faster than t−1. Thus, we
can match the decay rates of the source and the destination driven
search with that of a spatial caching strategy by using an appro-
priate number of queries.

On the other hand, we argue that the memory requirement for
spatial caching is larger (in an order sense) than that for “sticky”
searches. This indicates that the appropriate strategy for querying
over large sensor networks would be to use multiple queries and
advertisements using the “sticky” search strategy.

keywords: Stochastic processes/Queueing theory

I. INTRODUCTION

With the availability of cheap wireless technology and the
emergence of micro-sensors based on MEMS technology [10],
[21], sensor networks are anticipated to be widely deployed in
the near future. Such networks have many potential applica-
tions, both in the military domain (eg. robust communication
infrastructure or sensing and physical intrusion detection), as
well as commercial applications such as air or water quality
sensing and control. Such networks are usually characterized
by the absence of any large-scale established infrastructure, and
nodes cooperate by relaying packets to ensure that the packets
reach their respective destinations.

An important problem in sensor networks is that of query-
ing for information. The query type could range from trying
to determine the location of a particular node to querying for
particular information. This problem has recently received a lot
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of attention [8], [3], [2], [20], and is also related to routing over
such networks [6], [19], [9], [7].

We consider a problem where a querying node (the
source/user) transmits a query for some information (the desti-
nation), which is located at a (normalized) distance of ’1’ from
the source. However, we assume that the source has no knowl-
edge of the location of the information (the destination), nor
that they are separated by a distance of ’1’ (i.e., no destination
location information is available). Further, we assume that the
nodes do not have any “direction” information. In other words,
nodes only know who their local neighbors are, but do not have
their geographical position or direction information.

We consider three search/query strategies: (i) A Source-only
search, where the source (i.e., the user) tries to locate the desti-
nation by initiating a query which propagates as a “continuous
time” random walk (Brownian motion); (ii) a Source and Re-
ceiver Driven “Sticky” Search, where both the source and the
destination send a query or a advertisement (both propagating
as random walks), and these leave “sticky” trails to aid in locat-
ing the destination; and (iii) where the destination information
is spatially cached (i.e., repeated periodically over space), and
the source tries to locate any one of the caches.

As an aside, we note that if partial destination location infor-
mation was available, one could design strategies which explic-
itly use this knowledge. For instance, if it was known a-priori
that the destination was at a distance ’1’ from the source, con-
strained flooding would be a candidate strategy for locating the
position of the destination. Further, the availability of direction
information (for instance, with GPS equipped nodes) would en-
able strategies similar to the “sticky” search, but route along
“straight-lines” in the network [2] instead of random walks.

In this paper, we study query strategies in the absence of lo-
cation/direction information. We consider the search strategies
based on random walks, and associate an (exponentially dis-
tributed) random time-out interval, after which a query ceases
to propagate. Thus, if the destination is not found before the
time-out, the query is unsuccessful. We derive the asymptotic
behavior of the querying strategies discussed above, and discuss
their relative performance.

A. Related Work

As discussed earlier, there has been much work on querying
and routing with information constraints in sensor networks.
There have been various protocols and algorithms that have
been recently developed for these networks [8], [3], [2], [20],
[6], [19], [9], [18], [12], [13]. These protocols span various
types – from using geographical information [9], [12], [8], [6]
to (limited) flooding [18], [20] to gossip [13], [18] – and use
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Fig. 1. A random walk based search on a sensor grid

various combinations of the three schemes we have considered.
In Section II, we shall discuss [2] in detail.

We use Brownian motion based models for analysis. Related
work includes [7], where the author studies optimal placement
of limited routing information over a sensor network. The au-
thor shows that uniform placement over space will not be op-
timal. Instead, the routing information needs to be “concen-
trated” according to a specific pattern (a bicycle wheel spokes
like pattern). Other related work includes [14], where the au-
thors consider an object at origin and an infinitely large number
of mobile nodes (initially placed according to a spatial Poisson
process) looking for the object. They show that the probabil-
ity that the object is not located decays exponentially in time.
For the schemes we have described in Section I, there does not
seem to be a analytical comparison in literature. In this paper,
we derive the asymptotic performance of these schemes, and
discuss their trade-offs.

II. QUERYING MODELS FOR A SENSOR NETWORK

Let us consider a regular sensor grid network, with n sensor
nodes per unit area as shown in Figure 1. For such a model,
nodes are spaced regularly with the inter-node distance being
1/
√
n. Let us assume that each node can communicate a dis-

tance 1/
√
n. In other words, the nodes can communicate with

each of it’s adjacent neighbors.
We are interested in the situation where a node located at ori-

gin (also referred to as the source node) is interested in locating
some particular information, which is located at some region
or node on the grid, henceforth referred to as the destination.
We assume that the destination is located at a (normalized) dis-
tance of ’1’ from the source node. However, we assume that the
source node has no knowledge of the location of the destination.

We consider the following three query strategies for locating
the destination.

(i) Source-only Search: In this strategy, the source transmits
a query requesting the destination information. As the location
of the destination is unknown, the query propagates through the
network as a random walk. In other words, each intermediate
node along the query path picks a neighbor at random (i.e., with
equal probability of 0.25) and forwards the query to it (see Fig-
ure 1). The destination is located at a normalized distance of
’1’ from the source. We assume that all nodes that are a dis-
tance less than ε (for some fixed 0 < ε < 1) from the destina-
tion know the location of the destination, or equivalently, they
form a spatial memory structure (for example, all the nodes in
the shaded region in Figure 1 have the information, or possi-
bly store the information in a distributed manner). Thus, if the
query enters a region which is at a distance less than ε, the query
is said to be successful. The destination can then pass the infor-
mation back to the source node by various means depending on
the infrastructure available (for example, using an addressing
mechanism where the routing tables in intermediate nodes are
updated by the source query).

Further, we assume that there is a time-out associated with
the query. At each intermediate node along the path of the
query, the node could do one of two things: it could decide to
not forward the query with some positive probability, or it could
decide to forward the query (to a random neighbor). Thus, for
such a forwarding model, the query will terminate after a geo-
metrically distributed number of hops (if the destination has not
been found).
(ii) Source-Receiver “Sticky” Search: The second strategy
we consider is a “sticky” search. Unlike the previous case
where the source alone sends a query, we now consider the case
where both the source and destination send “probes” into the
network. As before, the source sends (one or more) queries.
These queries propagate as a random walk, with a geomet-
rically distributed time-out. However, in addition, the desti-
nation also sends probes into the network to advertise itself.
These advertisements propagate over the network in a manner
similar to that of a query, i.e., as a random walk with a ge-
ometrically distributed time-out. Henceforth, we will refer to
queries and/or advertisements as probes that are transmitted by
the source and/or destination.

In addition, the source and destination probes leave a “sticky”
trail as they traverse the networks (see Figure 2). That is, each
node in the network through which the source query passes
through remembers that a query passed through it and is search-
ing for some particular information. Similarly, each node in
the network through which the destination advertisement passes
through remembers that a a probe passed through it advertising
the presence of some information. Thus, if the source (desti-
nation) probe passes through a node through which the desti-
nation (source) previously passed through, it can simply trace
backward along the destination (source) probe’s path to reach
the destination (source), see Figure 2. This scheme has been
proposed by Braginsky and Estrin [2], and the authors develop
the rumor routing protocol for sensor networks based on this
idea.
(iii) Spatially-periodic Caching: Finally, the third strategy
we consider is spatial caching. As in the previous cases, we
assume source initiates a query which propagates as a random
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Fig. 2. A source and destination based “sticky” random walk on a sensor grid
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Fig. 3. Periodic caching over a sensor grid

walk with a geometrically distributed time-out. However, in
this case, we assume that the destination information is as-
sumed to be periodically cached along a regular grid as shown
in Figure 3. Thus, we assume that there is some infrastructure
which allows the dispersion of the information to each of the
caches. Further, we assume that each of the caches is of radius
0 < ε < 1. Thus, as in the source-only search strategy, each
cache of radius ε could either be a distributed memory struc-
ture, or else one of the nodes in each cache could have the data,
and let all the other nodes within the cache point toward it.

A. A Brownian Motion Based Model

In the previous section, we considered a random walk on a
grid, with step size 1/

√
n and a geometrically distributed time-

out. In this section, we will informally show that for n large
enough, this model can be approximated by a two dimensional
planar model, where the source and destination probes prop-
agate as a Brownian motion with an exponentially distributed
time-out. Thus, in the rest of the paper, we will consider Brow-
nian motion based models for querying over a sensor network.

Let us rotate the coordinate axes by 45 degrees, and let
(X(i), Y (i)) be the random variables which correspond to
the discrete step taken at time i, with respect to the new co-
ordinate system. Thus, (X(i), Y (i)) can take one of four
values: (1/

√
2, 1/

√
2), (−1/

√
2, 1/

√
2), (1/

√
2,−1/

√
2), or

(−1/
√

2,−1/
√

2), each with equal probability, depending on
which direction the random walk propagates.

Thus the location of the random walk (Lx(j), Ly(j)) at time
j is given by

Lx(j) =
1√
n

j∑
i=0

X(i)

Ly(j) =
1√
n

j∑
i=0

Y (i)

Now, let us define the continuous time processes

Bn
x (s) =

1√
n

�2ns�∑
i=0

X(i) (1)

Bn
y (s) =

1√
n

�2ns�∑
i=0

Y (i). (2)

Thus, at any continuous time s, Bn
x (s) is the x-coordinate of

the random walk after �2ns� time-steps (and correspondingly
Bn

y (s)), and �·� is the integer floor function (i.e., the integer part
of the argument). From standard theory for Brownian motion
[11], we can show that the processes described in (1) and (2)
converges (in a suitable sense) to a two dimensional Brownian
motion B(s) = (Bx(s), By(s)) where Bx(s) and By(s) are
independent one-dimensional Brownian motions. This follows
from a central limit theorem type of an argument for functions1.

In addition, we can show that under the time scaling that has
been considered here (the mean time-out of the geometric ran-
dom variable is scaled as 2nt), the geometrically distributed
time-out converges to an exponentially distributed time-out. We
will denote the random variable corresponding to the time-out
by τ, where τ ∼ exp(1/t). In other words, τ is exponentially
distributed, with mean duration E(τ) = t.

Thus, in the rest of this paper, we will study unit variance
Brownian motion based models for querying, and the details of
the models will be described in the appropriate sections of this
paper.

1We scale time by 2n in (1) and (2) to ensure that the limiting Brownian
motion has unit variance.
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III. MAIN RESULTS AND DISCUSSION

The main results in this paper are the following:

(i) For a source-only search, in Section IV, we show that the
probability that a query is unsuccessful decays as 1

log(t) ,

where t is the mean time-out interval.
(ii) Next, in Section V, we consider the case where both

the source and the destination send “sticky” probes (thus,
memory in the network is utilized).
We show that the probability that a query is unsuccess-
ful decays as 1

t5/8 . Further, with k probes (i.e., the source
sends multiple queries, and the destination sends multiple
advertisements), the probability that a query is unsuccess-
ful decays at least as fast as t−5k/8.

(iii) Finally, in Section VI, we consider a spatially periodic
caching strategy. We show that the probability that a query
is unsuccessful decays no faster than 1

t . We also provide
an order computation which argues that spatial caching in
fact leads to an order 1

t decay.

The results in Section IV shows that the probability that a
query is unsuccessful decays as (log t)−1 for a single source-
only search. By using multiple source probes, it is easy to see
that the probability decays as (log t)−k, where k is the number
of probes. On the other hand, the source and receiver driven
search, as well as spatial caching utilize memory in the net-
work. This enables the decay probability to change from loga-
rithmic decay to polynomial decay. Thus, the implication is that
no matter how many finite number of source queries are used,
we cannot match query techniques which utilize memory that is
spatially distributed over the network. In Section VIII, we will
see that there is a marked difference in performance between the
source-only search and the performance of query/search strate-
gies which use memory.

Next, for the source and receiver driven “sticky” search, the
probability that a query is unsuccessful decay at least as fast
as t−k5/8, where k is the number of probes. However, from
the analysis in Section VI for spatially periodic caching, the
probability that a query is unsuccessful decays at most as fast
as t−k, where k is the number of probes.

Thus, as both strategies have polynomial decay laws, by
choosing the number of probes appropriately, it is possible to
make the decay asymptotics for both the source and receiver
driven search, as well as that due to spatial caching to be the
same.

Finally, in Section VII, we present an argument to show that
the memory requirement for caching is larger (in an order-wise
sense) than that for “sticky” searches. While the spatial caching
strategy requires memory that is proportional to the node den-
sity n, the “sticky” search strategy requires memory of the or-
der2 of o(n).

Further, a caching strategy requires a higher degree of co-
operation in the network than to simply send advertisements.
These arguments indicate that the appropriate strategy for
querying over large sensor networks would be to use multiple
probes with a “sticky” strategy.

2A function f(n) is said to be o(g(n)) if limn→∞ f(n)/g(n) = 0.

2ε

Source

Destination

Fig. 4. A Source driven search

IV. SOURCE-ONLY SEARCH

As described in Section II-A, we consider a query which
propagates as a two-dimensional planar Brownian motion, de-
noted by B(s), and ceases after an exponentially distributed
time-out τ, with E(τ) = t.

We assume that the destination is at a (normalized) distance
’1’ from the source. Without loss of generality, we assume that
it is located at (−1, 0) on the x-y plane (see Figure 4). The des-
tination advertises that it has the required information to a small
neighborhood (of radius ε) around itself. Thus, the query suc-
cessfully finds the destination if the Brownian motion trajectory
enters the circular region of radius ε about (−1, 0).

Let us define

B̂(s) =
{
B(s) s ≤ τ
B(τ) s > τ

Thus, B̂(s) is a Brownian motion that has been “stopped” at a
random time τ. Next, we fix some small value of ε > 0, (ε < 1)
and let y = (−1, 0). Let A = {x ∈ �2 | d(x, y) ≤ ε} be a ball
of radius ε centered at (−1, 0). Define

psd(t) = Pr
(
B̂(s) does not intersect A

)
Thus, psd(t) is the probability that the query does not locate the
information before time-out.

Proposition IV.1: Fix any ε ∈ (0, 1). We have

lim
t→∞(log t)psd(t) = −2 log ε (3)

Proof: Let us translate the axes such that the receiver is cen-
tered at origin. To do so, let us define

W (s) = B(s) − (−1, 0),
Â = {x ∈ �2 | | x |≤ ε}

Thus, W (s) is the shifted Brownian motion which starts at
(1, 0), and Â is a small circular region about origin. Then, from
the translation invariance property of Brownian motion [11], we
have

psd(t) = Pr
(
Ŵ(s) does not intersect Â

)
Let R(t) = | W (t) | be the Euclidean distance of W (t) from
the origin. R(t) is known as the Bessel process of order zero.
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Then, we have

psd(t) = Pr
(
Ŵ(s) does not intersect Â

)
= Pr

(
inf

0≤s≤τ
R(s) > ε

)
,

with R(0) = 1. From standard formulas for a Bessel process
[1, page 373, 1.2.2], we have that

Pr
(

inf
0≤s≤τ

R(s) > ε

)
= 1 − K0(

√
2/t)

K0(ε
√

2/t)
(4)

where K0(x) is the modified Bessel function of order zero, and
is given by

K0(x) = I0(x) log
(

2
x

)
− C

+
∞∑

k=1

x2k

22k(k!)2
ψ(k + 1), (5)

ψ(k + 1) = −C +
k∑

i=1

1
i
, (6)

I0(x) =
∞∑

k=0

1
(k!)2

(x
2

)2k

, (7)

where C = 0.5772 is the Euler’s constant. Let us denote

g(x) =
∞∑

k=1

x2k

22k(k!)2
ψ(k + 1)

To show (3), we first prove the following.

lim
x→0

| g(x) | = 0 (8)

lim
x→0

| g(x) − g(εx) | = 0 (9)

These follow directly from the definition of g(·). To see that the
limits are well defined, we observe that

ψ(k + 1) < −C + k < k!.

Thus, we have

| g(x) | <

∞∑
k=1

1
22k(k!)2

x2k(k!)

=
∞∑

k=1

1
k!

(x
2

)2k

= ex2/4 − 1

Thus, (8) follows. The proof of (9) follows from the triangle
inequality. Similarly, we have

lim
x→0

I0(x) = 1 (10)

lim
x→0

| I0(x) − I0(εx) | log(1/x) = 0 (11)

Equation (10) follows directly from (7) by substitution. To
show (11), for any fixed 0 < ε < 1, and for any x ≥ 0, we
have from (7), we have

| I0(x) − I0(εx) | =
∞∑

k=1

(1 − ε2k)
22k(k!)2

x2k

<

∞∑
k=1

1
22k(k!)2

x2k

<

∞∑
k=1

1
22kk!

x2k

= ex2/4 − 1

≤ x2

4
,

Thus, we have

0 ≤ lim
x→0

| I0(x) − I0(εx) | log(1/x)

≤ lim
x→0

x2

4
log(1/x)

= lim
y→∞

log y
4y2

= 0

Next, from (4), we have

log(t)psd(t) = log(t)

(
1 − K0(

√
2/t)

K0(ε
√

2/t)

)

= log(t)





 I0(ε

√
2/t) log(2/(ε

√
2/t))

−I0(
√

2/t) log(2/
√

2/t)
−g(√2/t) + g(ε

√
2/t)




(
I0(ε

√
2/t) log(2/(ε

√
2/t))

−C + g(ε
√

2/t)

)




= log(t)





 1

2 log(2t)(I0(ε
√

2/t) − I0(
√

2/t))
−I0(ε

√
2/t) log(ε)

+(g(ε
√

2/t) − g(
√

2/t))





 1

2I0(ε
√

2/t) log(2t)
−C + g(ε

√
2/t)

−I0(ε
√

2/t) log(ε)







Now, from (10) and (8), it follows that

lim
t→∞

log(t)
 1

2I0(ε
√

2/t) log(2t)
−C + g(ε

√
2/t)

−I0(ε
√

2/t) log(ε)




= 2 (12)

Finally, combining the various limits, from (12), (10), (11) and
(9), we have

lim
t→∞ log(t)psd(t) = −2 log(ε).
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Fig. 5. Source-destination “sticky” search, where the query and the advertise-
ment both leave trails in the network

We finally comment that by using multiple independent
queries, it is clear that Proposition IV.1 implies

lim
t→∞(log t)kpsd = (−2 log(ε))k,

where k is the number of queries.

V. SOURCE AND RECEIVER DRIVEN “STICKY” SEARCH

In the previous section, we assumed that the destination ad-
vertises in a small neighborhood about itself. Instead, in this
section, we consider the case where both the source and des-
tination send probes into the network. As before, the source
sends (one or more) queries, which are described by means of
Brownian motions with exponential time-outs. The destination
also sends probes into the network to advertise itself. These
advertisements propagate over the network also as Brownian
motions with exponential time-outs. In addition, as discussed
in Section II, the probes each leave “sticky” trails as they tra-
verse the networks (see Figure 5), where intermediate nodes in
the network remember the query or advertisement that passed
through it.

Let the source initiate m queries, each of which is described
by a Brownian motion Bsrc

i (t), i = 1, 2, . . . ,m. Over any in-
terval of time [0, T ], we denote Bsrc

i [0, T ], i = 1, 2, . . . ,m to
be the corresponding trajectories. Similarly, let the destination
initiate n advertisements, each of which is described by a Brow-
nian motion Bdst

j (t), j = 1, 2, . . . , n, with the corresponding
trajectories over [0, T ] denoted by Bdst

j [0, T ], j = 1, 2, . . . , n.
Then, in recent work by Lawler et. al. [15], [16], [17] on

intersection exponents for Brownian motion, the authors show
the following result. Let us define

qmn(T ) =

Pr

[(
m⋃

i=1

Bsrc
i [0,T]

)⋂(
n⋃

i=1

Bdst
i [0,T]

)
= φ

]

Thus, qmn(t) is the probability that the two “bundles” of Brow-
nian motions will never intersect over the time interval [0, T ].

Theorem V.1: [Lawler, Schramm and Werner 2000] There
exist c > 0 such that for any T ≥ 1,

1
c
T−η(m,n) ≤ qmn(T ) ≤ cT−η(m,n)

where

η(m,n) =
1
96

[(√
24m+ 1 +

√
24n+ 1 − 2

)2 − 4
]

In the problem we consider on source and receiver driven
search, each Brownian motion has an independent time-out. Let
τsrc
i , i = 1, 2, . . . ,m, and τdst

j , j = 1, 2, . . . , n, be indepen-
dent, identically distributed exponential random variables, with
E(τsrc

i ) = E(τdst
j ) = t. Let us denote

pmn(t) =

Pr


( m⋃

i=1

Bsrc
i [0, τ src

i ]

)⋂
 n⋃

j=1

Bdst
j [0, τdst

j ]


 = φ




Thus, pmn(t) is the probability that the two “bundles” of Brow-
nian motions3, each with an independent time-out will never
intersect. In our case, we have randomness due to two sources:
the path of the Brownian motions, and the exponential time-
outs. Interestingly, we observe that for n + m ≤ 3, the decay
function of pmn(t) depends only on the randomness due to the
path of the Brownian motions. Using Theorem V.1, we will de-
rive the exact asymptote. However, for larger numbers of Brow-
nian motions, the randomness due to the exponential time-outs
could also become a factor, and we will derive an upper bound
on the non-intersection probability.

Proposition V.1: There exist finite, strictly positive constants
c1, c2 such that

c1 ≤ lim inft→∞ t5/8p11(t)
≤ lim supt→∞ t5/8p11(t) ≤ c2 (13)

c1 ≤ lim inft→∞ tp21(t)
≤ lim supt→∞ tp21(t) ≤ c2 (14)

Further, for any k ≥ 1, there exists a finite, positive constant,
c3(k) > 0, such that

lim sup
t→∞

t5k/8pkk(t) ≤ c3(k) (15)

Proof: We first consider (13). Let us define τ̄ =
max{τsrc

1 , τdst
1 }, and τ = min{τsrc

1 , τdst
1 }. Then, we have

pmn(t) = Pr
[
Bsrc

1 [0, τ src
1 ]

⋂
Bdst

1 [0, τdst
1 ] = φ

]
≤ Pr

[
Bsrc

1 [0, τ ]
⋂

Bdst
1 [0, τ ] = φ

]
=

∫ ∞

0

q11(s)
2
t
e−2s/tds,

where the last step follows from the definition of qmn(T ), and
the fact that min of two independent exponential random vari-

3From symmetry, we have pmn(t) = pnm(t).
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ables is also an exponential random variable. Thus, we have

pnm(t) =
∫ 1

0

q11(s)
(

2
t

)
e−2s/tds

+
∫ ∞

1

q11(s)
(

2
t

)
e−2s/tds

≤
∫ 1

0

2
t
e−2s/tds

+ c

∫ ∞

1

t−5/8

(
2
t

)
e−2s/tds (16)

= (1 − e−2/t) +
cΓ(3/8, 2/t)

t5/8
, (17)

where Γ(·, ·) is the incomplete Gamma function. Equation (16)
follows from Theorem V.1, and the fact that q11(s) ≤ 1. Equa-
tion (17) follows from expressions for exponential integrals [5,
Section 3.381].

Now, observe that (1 − e−2/t) = 2/t + o(1/t). Further, it
follows from the definition of the incomplete Gamma function
that limt→∞ Γ(3/8, 2/t) = Γ(3/8) ≈ 2.27. Thus, the upper
bound in (13) follows. Similarly, the lower bound in (13) can be
derived using the definition of τ̄ . The proof of (14) is identical.
We skip the details for brevity.

To show (15), observe that

pkk(t) ≤ [p11(t)]
k (18)

To see this, recall that we have k independent Brownian
motions originating from the source, which are indexed by
i = 1, 2, . . . , k; and k independent Brownian motions originat-
ing from the destination, which are indexed by j = 1, 2, . . . , k.
By considering intersections only between equal indices (i.e.,
i = j), and neglecting all intersections with indices i 
= j, the
bound in (18) follows from the independence of the paths and
the time-outs. Thus, (15) follows.

Remark V.1: In Proposition V.1, we have the exact asymp-
totics when n+m ≤ 3. However, when n+m ≥ 4, we provide
only an upper bound.

This is explained by observing that when n+m ≤ 3, the up-
per bound based on the minimum of the time-outs is dominated
by the randomness in the Brownian paths, and not the random-
ness in the time-out. This can be seen from (17). The first term
in the summation corresponds to the randomness in the time-
out, and the second term corresponds to the randomness in the
paths. The first term is of order 1/t, while the second term
decays slower. Thus, the asymptote is dominated by the ran-
domness in the Brownian path. However, for n + m ≥ 4, the
asymptote due to the Brownian path decays as 1/ta for some
a > 1. Thus, a bound using the minimum of time-outs will not
provide a tight bound. In general, it is possible that the exact
asymptote will depend on both the randomness due to the paths
as well as the randomness due to the time-outs.

VI. SPATIALLY PERIODIC CACHING

Unlike in the previous sections where the target informa-
tion was localized, in this section, we consider asymptotics

1 − ε

2

2ε

Fig. 6. A spatially periodic cache

of caching (see Section II). Assume that the source initiates
a query from origin. The destination information is assumed
to be periodically cached along a grid (see Figure 6), with the
distance from the origin to the nearest cache being normalized
to ’1’. A small ε is chosen, and each cache is assumed to be of
radius ε.

Let us define pspc(t) to be the probability that the query
times-out before it reaches any cache (such as for the trajectory
in Figure 6).

Proposition VI.1: Fix any ε ∈ (0, 1). We have

lim
t→∞ tpspc(t) ≥ (1 − ε)2

2
(19)

Proof: The result follows from asymptotics of a killed Bessel
process. As in Proposition IV.1, let R(t) =| B(t) | be the
Euclidean distance of B(t) from the origin.

Suppose that the Bessel processR(t), (the “radius”’ process)
does not exceed 1− ε before time-out (see Figure 6). Then, this
clearly implies that the Brownian motion does not hit a cache
before time-out. Thus, we have

pspc(t) ≥ Pr
(

sup
0≤s≤τ

R(s) < 1 − ε

)
,

with R(0) = 0. From standard formulas for a Bessel process
[1, page 373, 1.1.2], we have that

Pr
(

sup
0≤s≤τ

R(s) < 1 − ε

)
= 1 − 1

I0((1 − ε)
√

2/t)

where I0(x) is defined in (7). Thus, we have

tpspc(t) ≥ t(I0((1 − ε)
√

2/t) − 1)
I0((1 − ε)

√
2/t)

(20)

Consider the numerator in (20). We have

t(I0((1 − ε)
√

2/t) − 1) = t

∞∑
k=1

1
(k!)2

(
1 − ε

2

√
2
t

)2k

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



= t

∞∑
k=1

1
(k!)2

(1 − ε)2k

(
1
2t

)k

=
(1 − ε)2

2

∞∑
k=1

1
k2

1
((k − 1)!)2

(1 − ε)2(k−1)

(
1
2t

)k−1

=
(1 − ε)2

2

∞∑
l=0

1
(l + 1)2

1
((l)!)2

(1 − ε)2l

(
1
2t

)l

=
(1 − ε)2

2

+
∞∑

l=1

(1 − ε)2

2(l + 1)2
1

((l)!)2
(1 − ε)2l

(
1
2t

)l

(21)

Substituting (21) in (20), and taking the limit as t → ∞, the
result follows.

The bound derived in this section is optimistic, in the sense
that it under-estimates the probability that the query does not lo-
cate a cache (note that for a “perfect” search strategy, this prob-
ability should be zero). Thus, the result says that the “miss”
probability is no better than order 1/t. In the next section, we
present an approximate computation which suggests that the
bound captures the correct order of decay with respect to t.

Remark VI.1: We comment that the computation used in
Proposition VI.1 could also be used to model a sensor network
with multiple exit points to a wired Internet. Another example
could consist of a large number of sensor nodes which mea-
sure some physical quantity, and report this data to one of many
“fusion centers.” If the location of the fusion centers are not
known, the analysis in this section and that in Section VI-A
could be used to determine the time-out that is needed for the
message to be transfered to any one fusion center with a low
probability of failure.

A. A Computation for Correctness of Order

In this section, we present an approximate computation that
indicates that the optimistic bound in Proposition VI.1 is of
correct order (with respect to t). As in the previous section,
consider a spatially periodic cache as shown in Figure 7, with
distance between consecutive caches being

√
2. In addition, we

consider a boundary (indicated by the dotted curve in Figure 7),
which consists of a circle with four protuberances. For small ε,
the curve is approximately a circle of radius ’1’.

Now consider a Brownian motion which starts at origin.
There are three possible cases to consider: (i) due to time-out,
the Brownian motion terminates before it hits the dotted curve
in Figure 7 (i.e., before it travels a distance (approximately) ’1’
from origin) which is illustrated by the thick trajectory in Fig-
ure 7, (ii) the Brownian motion hits the dotted curve, but does
not hit a cache, and (iii) the Brownian motion hits the dotted
curve, and hits a cache.

Consider Case (ii), where the Brownian motion hits the dot-
ted curve, but does not hit a cache. This is illustrated in Figure 7
by the trajectory which hits some point ’x’ on the dotted curve.
From the independent increments property of the path of the
Brownian motion [11], and the memoryless property of the ex-
ponential time-out, we can ’restart’ the Brownian motion from

x

2ε

Fig. 7. Approximation by periodic “restarting”

location ’x’ independent of both the path and the time it took
to get there. In other words, we can reset the time to zero and
consider a new exponential time-out as well as a new Brownian
motion with initial value of ’x’, independent of the past history.

As an approximation, instead of restarting at ’x’, we will
restart the Brownian motion at origin. This seems to be a con-
servative approximation. To see this, suppose that ’x’ is very
close to a cache. Then, restarting at origin will lead to a smaller
cache hitting probability than restarting at ’x’. However, for a
small cache radius ε, the probability that ’x’ is close to a cache
is small. For a small value of ε, given that the Brownian mo-
tion trajectory hits the dotted curve, ’x’ is (approximately) uni-
formly distributed over the dotted curve, and the probability that
it hits a cache is approximately (4× 2ε)/(2π). Thus, with large
probability, ’x’ is not very close to a cache.

Now, let q(t) = 1−pspc(t), be the probability that the Brow-
nian motion trajectory hits a cache before time-out. Next, let
f(ε) to be the probability that the trajectory hits a cache on the
boundary of the dotted curve given that the Brownian motion
trajectory hits the dotted curve. From the discussion in the pre-
vious paragraph, for a small value of ε, we have

f(ε) ≈ 4ε
π

Finally, let g(ε, t) be the probability that the trajectory hits the
dotted curve (irrespective of whether it hits a cache or not) be-
fore time-out. For small ε and large t, from the discussion in
Proposition VI.1, we have

g(ε, t) ≈ 1 − (1 − ε)2

2t
With the above definitions, and our approximation (of restart-

ing the Brownian motion at origin), we have

q(t) ≈ [g(ε, t)f(ε)] + [g(ε, t)(1 − f(ε))][g(ε, t)f(ε)]
+[g(ε, t)(1 − f(ε))]2[g(ε, t)f(ε)] + . . .

The first term corresponds to the probability that the Brownian
motion trajectory hits a cache when it first hits the dotted curve
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(Case (iii) we considered earlier). The second term corresponds
to the probability that initially Brownian motion hits the dotted
curve, but does not hit a cache. However, the restarted Brown-
ian motion hits a cache. A similar reasoning holds for the third
term, and so on. Thus, summing the geometric series, we have

q(t) ≈ g(ε, t)f(ε)
1 − g(ε, t)(1 − f(ε))

From the definition of q(t), we now have

pspc(t) = 1 − q(t)

≈ 1 − g(ε, t)
1 − g(ε, t)(1 − f(ε))

Simplifying, and using the approximate expression for g(ε, t),
we have

pspc ≈ (1 − ε)2

2
1

f(ε)t+ (1−ε)2

2 (1 − f(ε))

Thus, for large t, and fixed ε > 0, this indicates that

pspc(t) ∼ 1
t
,

i.e., this suggests that the bound derived in Proposition VI.1 is
of the correct order with respect to t.

VII. MEMORY REQUIREMENT AND COMPARISON

As we have discussed in Section III, for a source only search,
the results in Section IV shows that the probability decays to
zero only logarithmically fast (i.e., (log t)−k, where k is the
number of probes).

On the other hand, the “sticky” search as well as caching uti-
lize memory in the network, and this enables the decay prob-
ability to change from logarithmic decay to polynomial decay.
Thus, as both are polynomial decay laws, by choosing the num-
ber of probes appropriately, it is possible to make the decay
asymptotics for the “sticky” search and due to spatial caching
to be the same.

Now, let us consider the memory requirements for the spa-
tially periodic caching strategy. From properties of Brownian
motion, over an interval of time [0, T ], the Brownian motion
traverses a distance

√
T . Thus, given that the probability that a

query fails is at most δ, the search time-out should be set to have
a mean of (order) (δ)−1 (because pspc(t) ∼ 1/t). Over this in-
terval of time, the Brownian motion will traverse a distance of
order

√
δ−1 from origin (see Figure 8). Thus, when spatially

periodic caching is used, we need to make sure that caching is
present at least over the region of radius

√
δ−1 from origin.

As there is one cache per unit area (a unit square about origin
contains four “quarter” caches), we need a total of π/δ − 1
caches4, where we subtract ’1’ in the expression to discount for
the “original” destination.

On the other hand, the Lebesgue measure of the trajectory
of Brownian motion (i.e., the “area occupied” by the Brownian

4The area of a circle with radius
√

δ−1.

Θ(1/   δ )

Fig. 8. Order computation for memory with periodic caching

motion) is zero (though its Hausdorff dimension is 2 which in-
dicates that is not far from having positive Lebesgue measure
[4]).

The analysis in this paper is a continuum approximation of
a large sensor network. Let us now consider the discrete grid
model with n nodes per unit area. As the caching strategy re-
quires memory corresponding to a strictly positive area in the
limiting regime, it follows that for large n, the memory require-
ment will need to scale linearly with the number of nodes per
unit area. In other words, memory in Θ(n) nodes5 will be used
to aid the query.

However, a “sticky” search uses memory only along the path
of the Brownian motion. Thus, this strategy will require mem-
ory to scale more slowly than the number of nodes per unit area
(i.e., memory in o(n) nodes will be used to aid the query), as
the Lebesgue measure of the Brownian trajectory is zero.

Thus, the above argument indicates that the memory require-
ment for caching is larger (in an order-wise sense) than that
for “sticky” searches. Further, a caching strategy requires a
higher degree of cooperation in the network than to simply send
“sticky” probes. These arguments indicate that the appropriate
strategy for querying over large sensor networks would be to
use multiple “sticky” probes.

VIII. SIMULATION RESULTS OVER A DISCRETE GRID

In this section, we present simulation results for a grid net-
work. We consider a regular grid with n = 100 nodes per unit
area (see Figure 1), and the spacing between neighboring nodes
is 1/

√
n = 0.1. Thus, in this section, we study simulation re-

sults for the random walk models described in Section II and
the scaling described in Section II-A.

From the scaling described in Section II-A, an interval of
time T will correspond to 2nT discrete time-steps. Thus, expo-
nentially distributed time-out with mean t will correspond to a
geometrically distributed random variable with mean 2nt.

5A function f(n) is said to be Θ(n) if there exist positive constants c2 >
c1 > 0 such that for all n large enough, c1 ≤ f(n)/n ≤ c2.
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Mean Time (t) S-O S S-R S S-P C

1 0.975 0.515 0.659
10 0.826 0.132 0.125

100 0.646 0.016 0.014

TABLE I
COMPARISON OF QUERY STRATEGIES OVER A DISCRETE GRID. WE

CONSIDER A GRID A WITH DENSITY OF 100 NODES PER UNIT AREA. THE

QUERIES AND ADVERTISEMENTS PROPAGATE AS A RANDOM WALK WITH A

GEOMETRICALLY DISTRIBUTED TIME-OUT. THE NUMBERS IN THE TABLE

REPRESENT PROBABILITIES OF UNSUCCESSFUL QUERY. ABBREVIATIONS

KEY: SOURCE-ONLY SEARCH (S-O S), SOURCE-RECEIVER “STICKY”

SEARCH (S-R S), SPATIALLY-PERIODIC CACHING (S-P C)

In Table I, we present simulation results for the mean time-
out t = 1, 10 and 100 respectively, with the cache radius, ε =
0.15.

We see that for the source-only search, the probability that
a query is unsuccessful decays extremely slowly with t. How-
ever, for the source and receiver driven search as well as spa-
tial caching, the probability that a query is unsuccessful decays
much faster. This agrees with the asymptotes which we have
earlier discussed, where-in, we have shown that using spatial
memory considerably increases the decay rate with respect to t,
the mean time-out.

On the other-hand, the probability that the destination is not
found is approximately the same for the source and receiver
driven search, as well as with spatial caching. It is seen that
for large t, spatial caching only slightly out-performs a “sticky”
strategy. As both are polynomial decays, this simulation result
is not very surprising, given the analytical results in the previous
sections. Thus, the numerical results validate the asymptotic
results in this paper.

IX. CONCLUSION

In this paper, we have considered the the problem of a user
querying for information over a sensor network, where the user
does not have prior knowledge of the location of the informa-
tion. We have shown that for a source-only search, the prob-
ability that a query is unsuccessful decays to zero only log-
arithmically fast (i.e., (log t)−1). However, for schemes that
utilize spatial memory in the network (the source and receiver
driven search as well as spatial caching), this probability decays
polynomially fast (i.e., t−α, for some α > 0 depending on the
scheme).

On the other, we have argued that the memory consumption
with the spatial caching is much larger than that with a source
and receiver driven search. Thus, the results in this paper make
a strong case for utilizing a source and receiver driven “sticky”
search in a sensor network.
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