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Abstract— We examine the problem of maximizing data col-
lection from an energy-limited store-and-extract wireless sensor
network, which is analogous to the maximum lifetime problem
of interest in continuous data-gathering sensor networks. One
significant difference is that this problem requires attention to
“data-awareness” in addition to ‘“energy-awareness.” We formu-
late the maximum data extraction problem as a linear program
and present a 1 + w iterative approximation algorithm for it.
As a practical distributed implementation we develop a faster
greedy heuristic for this problem that uses an exponential metric
based on the approximation algorithm. We then show through
simulation results that the greedy heuristic incorporating this
exponential metric performs near-optimally (within 1 to 20% of
optimal, with low overhead) and significantly better than other
shortest-path routing approaches, particularly when nodes are
heterogeneous in their energy and data availability.

Keywords:  Sensor  Networks, = Mathematical  Program-

ming/Optimization, Network Flows.

I. INTRODUCTION

In many sensor network applications involving environmen-
tal monitoring in remote locations, planetary exploration and
military surveillance, it is neither necessary nor even possible
for a user to obtain data from the network continuously, in
real time. In such applications, the information from the entire
network can be extracted en masse after a prolonged period
of sensing and local storage. This process of extraction can be
done by a stationary sink or a mobile sink (robot). However,
since communication is often the most expensive operation for
a sensor node, the limited batteries may make it impossible
to collect all the data stored in the network. We examine the
problem of maximizing the data extracted (by a stationary
sink) from such an energy-limited sensor network consisting of
heterogeneous nodes. The maximum data extraction problem
is an analog of the maximum lifetime problem of interest in
continuous data-gathering sensor networks [3], [5], [14] that
has been studied previously. However, this problem introduces
an additional element of “data-awareness” that must be con-
sidered in addition to “energy-awareness.”

We first show how the maximum data extraction problem
can be formulated as a Linear Program. We then adapt and
extend techniques for multi-commodity flow problems first
developed by Garg and Koenemann [1] to develop an iterative
algorithm for our problem with a provable (1 + w) approxi-
mation. This algorithm suggests a new link metric (involving
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the remaining energies of both sender and receiver nodes, the
distance between them, and the data level at the sender) that
we then used to develop a fast, practically implementable,
distributed heuristic that we refer to E-MAX. The heuristic
employs a selfish strategy in that each sensor gives priority to
transmitting its data before relaying that of other nodes. Our
simulations show that this sophisticated heuristic offers near-
optimal performance under all conditions, and significantly
better compared to other naive greedy solutions such as
shortest-hop-count and shortest-distance routing, particularly
when nodes are heterogeneous in their energy and data avail-
ability.

The rest of the paper is organized as follows. In section II,
we discuss related work to place our contributions in context.
We define the problem and present the LP formulation and its
dual in section III. An interpretation of the LP dual suggests
the 1 4+ w iterative approximation algorithm that we present
and analyze in section IV. We discuss the implementation of
this algorithm in section V. We present fast implementable
heuristics in section VI. Simulation results comparing these
implementations are presented in section VII. Concluding
comments are provided in section VIIIL.

II. RELATED WORK

Our work is inspired by a vast body of literature related to
optimizing the performance of ad hoc and sensor networks.
We outline a few of these studies that are very close in spirit
to our work.

A. Energy Aware Routing

Most of the literature in this area has focused on routing
techniques that extend the life time of a sensor or ad hoc
network by taking into account remaining battery energy.
In [8], Toh has proposed the Conditional Max-Min Battery
Capacity Routing (CMMBCR) which selects the shortest path
for routing data from one node to the other in an ad hoc
network such that all nodes on the path have remaining battery
power above a certain threshold. Singh et al. [7] present an
elaborate study of 5 different metrics which are all a function
of the node battery power and conclude that these metrics
can give significant energy savings over naive hop-count-based
metrics. In [11], Kar et al. propose an online algorithm for
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routing messages in an ad hoc network , also based on the
remaining battery energy of a node.

Energy efficient routing techniques have also been proposed
in several studies on sensor networks. Heinzelman et al.
propose a family of adaptive protocols called SPIN for energy
efficient dissemination of information throughout the sensor
network [6]. In [12], Heinzelman et al. propose LEACH,
a scalable adaptive clustering protocol in which nodes are
organized into clusters and system lifetime is extended by ran-
domly choosing the cluster-heads. Lindsey, et al. propose an
alternative data gathering scheme called PEGASIS in [13], in
which nodes organize themselves in chains, also with rotating
elections, for communicating data. Lindsey, et al [4] study data
gathering schemes that explore the trade-off between energy
consumed and delay incurred.

The problem of maximum data extraction introduces “data-
awareness” as an important factor for routing data in addition
to “energy-awareness” as we discuss in section II-B. This
problem can also be formulated as a multi-commodity flow
problem. There is a vast literature on algorithms for multi-
commodity flow problems and their application to networking.
Hence we next discuss studies in this area which are relevant
to our work.

B. Multi-commodity Flow Algorithms

The multi-commodity flow problem is of great practical
importance and theoretical interest. The problem deals with
finding a routing scheme to maximize the total quantity of
several different commodities (each possibly having different
sources and sinks) sent over a network with restricted capacity.

Maximizing the lifetime of a sensor network can be for-
mulated as a multi-commodity flow problem. In [9] Chang
et al. also use the multi-commodity flow formulation for
maximizing the lifetime of an ad hoc network. They propose
a class of flow augmentation and flow redirection algorithms
that balance the energy consumption rates across nodes based
on the remaining battery power of these nodes. This approach
seems to considerably increase the network lifetime. Bhardwaj
and Chandrakasan [14] examine feasible role assignments
(FRA) of nodes as a means of maximizing the lifetime of
aggregating as well as non-aggregating sensor networks, and
also make use of linear programs based on network flows.
Kalpakis et al. examine the MLDA (Maximum Lifetime Data
Aggregation) problem and the MLDR (Maximum Lifetime
Data Routing) problem in [5], again formulating it as an LP
using multi-commodity network flows. They observe that as
the network size increases, solving the LP takes considerable
time and propose some clustering heuristics to achieve near-
optimal performance.

As the size of the LP increases, it becomes desirable to solve
this problem approximately but quickly. Garg, et al. present
an excellent discussion of the current fast approximation
techniques for solving the multi-commodity flow problem [1].
They propose a simple polynomial time iterative algorithm
that gives a (1 + €) approximation to the multi-commodity
flow problem and some other fractional packing problems.
The algorithm associates a length with each edge. In each
iteration, the algorithm routes flow over the shortest path. After
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routing the flow, the algorithm increases the length of all the
edges along the shortest path. This is done so that subsequent
flow may be routed over an under-utilized path. This process
continues till the shortest path (using the length metric)
exceeds 1. However, at this point, it is possible that some
links might be over-utilized, i.e. in excess of their capacity.
The algorithm then scales down all the flows by a factor of the
maximum over-utilization. This is a beautiful algorithm that
explains the nature of the routing scheme needed to maximize
the flow in a multi-commodity flow problem. The algorithm
as stated needs some modifications for it to be applied to an
ad hoc network context. While Chang et al. in [3] have also
previously applied the Garg-Koenemann algorithm to ad-hoc
network lifetime maximization, there are significant difference
between [3] and our work that we describe below.

In this paper, we modify and extend the application of the
Garg-Koenemann algorithm to the problem of maximizing
data collection in store-and-extract sensor networks. Recep-
tions are assumed to consume battery power, unlike [3]. Also,
the above studies in the multi-commodity flow problem do not
restrict the amount of flow of each commodity [1] [3] [9]
[5]. With unrestricted flows, the solution for the maximum data
extraction problem would be trivial in that nodes near the sink
would monopolize the entire flow. We are interested in the case
where sensors generate a finite amount of data i.e. the flow
of each commodity is finite. Thus as mentioned at the end of
section II-A, the maximum data-extraction problem introduces
the data availability at each node as an important routing
concern, in addition to the ‘“energy-awareness” previously
discussed in the literature.

Besides developing an LP formulation for the maximum
data-extraction problem and extending the application and
analysis of the Garg-Koenemann approximation algorithm for
it, we also present a practical distributed heuristic based on
this algorithm that is shown to outperform other shortest-path
routing approaches, particularly in heterogeneous conditions
where nodes have varying data and energy availability.

III. PROBLEM DEFINITION

Consider a scenario where several sensors that are deployed
in a remote region have completed their sensing task and have
some locally stored data. We are interested in collecting the
maximum amount of data possible from all these sensors at a
sink node T, given some remaining energy constraints in each
of these sensors.

Figure 1 shows a sample scenario. Each node ¢ is labelled
with its (x,y) coordinates, its available data and remaining
energy. The goal is to extract all this data to the sink node. The
arrows and the indicated flows on each indicate the optimal
solution for this particular example obtained by using the LP
we describe in the next section.

We now present the formal model for the problem.

A. Model

Let NV be the total number of sensors. Let T" be the target
(sink) to which the data is to be sent. Let D}, . be the amount
of data (bytes) collected by sensor j, where Dy . > 0. ¢l ..
is the residual energy of sensor j. These sensors are arbitrarily
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Fig. 1. Tllustration of a sample scenario with optimal solution to the maximum
data extraction problem. Solution assumes 3: = 32.4uJ/byte/km? and
. = 400n.J /byte

deployed in a region. d;; is the Euclidean distance between
sensors 7 and j. A sensor ¢ can communicate with any sensor
7 which is within the communication range R from it. Thus,
this communicating range overlays a connectivity graph G' =
(V,E), where |[V| = N. An edge (i,j) € E iff d;; < R.

The energy consumed in transmitting a unit byte from one
sensor to the other depends on the distance between them.Tx;;
is the energy consumed in transmitting a single byte from
sensor 4 to j. Tx;; is assumed to be proportional to the dfj
ie. Txy; = Btdfj, where 3; > 0. R;; is the energy consumed
at sensor j for receiving a single byte of data from sensor
i. R;; is assumed to be independent of the distance d;;. Let
R;j = B, where (3, > 0.

For the ease of modelling, we add a fictitious source S,
such that there exists an edge from S to every other node in
V, except T. Also, add an edge from T to S. Let this new
graph be G'. Thus, G’ = (V',E’), where V' = V U S and
E'=EU{(S,i)}U{(T,S)}, where i € V, i # T. As will
be shown later in section III-B, the location of the fictitious
source S can be arbitrary.

The problem of collecting the maximum possible data from
these energy constrained sensor nodes can be formulated as a
multi-commodity flow problem. As shown later in sections III-
B and III-C, the addition of S and its associated links simplifies
the LP formulation for the multi-commodity flow problem and
our analysis.

B. Linear Program (LP) Formulation

In this section, we formulate the maximum data collection
problem as an LP. The constraints of the LP are

1) Flow Conservation: The amount of data transmitted by
a node is equal to sum of the amount of data received
by the node and the amount of data generated by the
node itself.

2) Energy Constraint: The amount of data received and
transmitted by a node is limited by the energy of the
node. However, there are no energy constraints for the
fictitious source S and the sink T.
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Let f;; be the amount of data transmitted from node 7 to
node j. The LP can now be formulated as follows:

Maximize fr,s such that
N N
d fii=D fiy =0
j=1 j=1
i#£S T8 > figdi;+ Y fi -

< €
(i,7)€EE (4,9)€EE
i# 8T fsi < Dipa
(,j)eE : fi; > 0
(D
where
Bt
B = — 2
br
) T e, = 422
Br

Note that we have normalized the energy in terms of
receptions i.e. each reception costs a unit of energy, while
each transmission from (7, j) costs ﬁdfj units, where 3 > 1.

By adding the fictitious source S and its associated links,
we have made the following transformations to the multi-
commodity flow problem:

1) The amount of data transmitted by S to any node ¢ is
equal to the amount of data D!  generated at node
1. The reception of this data from S does not incur any
energy consumption. Hence, as we mentioned in section
III-A, the placement of S does not affect the solution.

2) Note that since the flow conservation is satisfied by both
the fictitious source S and the target T, all the data
received by the target will be transmitted to the source
S, which in turn will be equal to the amount of data
transmitted by the source S.

3) The problem now becomes one of maximizing the
circulation of the commodities from S to T and back.
The advantage of this will become apparent in section
1I-C.

The above LP can be solved to compute the maximum
amount of data that can be collected from the N sensors. It
would also give the amount of data (flow) that should be sent
from sensor ¢ to sensor j.

However, in this study we are interested in proposing a
constructive algorithm that maximizes the amount of data
collected. For this purpose, we attempt to understand the
structure of the primal LP solution by examining the dual LP
in section III-C

C. Dual LP Formulation

The dual of the LP is as follows:
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Minimize Z biel + ¢ D?

i#S,T "
i#S,T,(i,j) € E:adl —a' + Bbd;; +V > 0
a® —a” > 1
i;«éT:ai—aS—&—ci > 0
i#£S,T:b0 > 0
i£ST:c" > 0

“)
Let a, b and ¢ be vectors such that their i’th element is
denoted by a’, b’ and ¢’ respectively. Let
A(b,c) = Y Ve + ¢ Dy, (5)
i#8,T
i.e. A(b,c) is the objective function of the dual LP. The above
dual has the following interesting interpretation:
Let {(b, c) be a length metric and let /; ;(b, ¢) be the length of
edge (i,7) in this metric. Then, if
ﬂbidfj +b if i£S ©)
c if i=8,j#T

The dual LP can be re-written as follows:

li,j (b, C) =

Minimize A(b,¢) such that
i#£T,S: 1 (byc) > a —ad
a® —at > 1
lsi(bc) > a® — a
(7
Consider an arbitrary S-T path P. Let P be S, i1, o, ...i5, T .
Now, the length of path P can be written as follows:
k—1
IP) = lsi(bc)+lirbc)+ > i, (b
z=1
> (as —a;) + (ai, —ar) +ai, —a;,
> as—ar
> 1 (®)

Thus, the length of any arbitrary S-T path in the [(b,c)
metric is greater than or equal to 1, which implies that the
length of the shortest path in the (b, c) metric should also
be greater than equal to 1. Thus, by transforming the primal
LP in section III-B into a circulation problem, we get a very
simple value i.e. 1 for the length of the shortest path in the
(b, ¢) metric.

Let P(b,c) be the shortest path in the metric (b, c) and
a(b, ¢) be the length of this shortest path. Thus, the objective
of the dual LP is to minimize A(b,c) such that a(b,c) > 1.

This is equivalent to minimizing ‘28:3
Let
b,c
¢ = M2 ©)

The above interpretation of the dual LP leads to a simple
algorithm which approximates the optimal value of the primal.
We specify the algorithm and analyze it in section IV.
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IV. APPROXIMATION ALGORITHM

We propose an iterative algorithm which is a modification
of the Garg-Koenemann algorithm [1].

Before proposing the algorithm, we introduce a few nota-
tions. Let

o b’ be the value of b’ in the j’th iteration.Initially, by =
co=201e Vi:ie V' :by=ch=4J. The choice of § is
discussed in section IV-B.

o f; be the total T-S (or S-T) flow till the j’th iteration.
Initially, this flow is zero i.e. fo = 0.

o A(j) = A(bj,c;) be the value of the dual objective
function after iteration j.

e P; = S,i1,i2,...i, T be the shortest S-T path in the
I(b;,c;) metric (at iteration j)!. On P;, let ip = S and
i1 =1T.

e a(j) = a(b;,c;j) be the length of the shortest S-T path
after iteration j.

Moreover, Vi € V', node ¢ has a capacity associated with it.
The capacity of a node depends on where it appears in an S-T
path. Hence, we define the capacity of a node with respect
to some path P = S,iy,42,...ix, 1" in which it appears. The
capacity () of each node in this path is modelled as follows:

K(S) = Dit..
el
k(1) = ";‘””
ﬁdil,iz_
K(iz) = {71 _'_Zz;x } forl <z <k
Tz3l241

(10)

The algorithm is as follows:
1) j=0
2) while(a(j) < 1) do
a) Select the shortest S-T path P;.
b) Route c units of data along this path, where c is

given as follows:
¢ = Ming<.<p{r(i:)}

i.e. “saturate” the shortest path.
¢) Update the vectors b and c as follows:

For 1<z <k,

_ 2

b;-z — bzz 1{1 ez7 iz+1

ec
+eiz}
For z =1,

o= 1+

! it Diylm}

% 7 ﬁ 12 %

bjl — bjlil{l_"_ 172}
d fi=/fi-1+ec
e) j=j+1

The number of nodes along the shortest S-T path changes from iteration
to iteration i.e. it should be kj. However for notational convenience, we drop
the subscript j.
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k#£1

On termination, f; gives the value of the total data collected. i e 1
While choosing the shortest S-T path, the algorithm accounts ‘ Z ( i 6)(fd;,, i T )
for the battery utilization (fraction of the battery power uti- (rsint1)€Fy
lized) as well as the data utilization (fraction of the data sent) = C“ + 5bh i1 T
at each sensor. Thus, the algorithm, as mentioned earlier in k#1
section II is both “energy-aware” and “data-aware”. Z b“‘(ﬂd% i 1) —

We analyze the approximation ratio of the algorithm in (iksik+1)EP;

tion TV-A.
section 5{1+ ﬂdn ot

. k#1
A. Analysis
AP - > (B, + D)
The objective function of the dual LP at the beginning of (i )eP; fotht
iteration j is given as follows: hr
. = ( ) 5{]‘ + ﬂdll ’LQ
AG) = ) b+ D, kA1
. 2
i#£S,T Z (Bdiy iy + 1)}
= Z bZ 16 + C 1Dmax (ik,ik+1)EP;
i7#S5,T Thus,
ec{ct | + bl1 pd? .
{ k;él He a(bj —bg,c; —co) > afj) — 0L (14)
Z 11+ 5dzk ZHI)} where L is the largest value of
('L.k,’ikﬁ—l)epj—l Kt
A(j) = A@G-1 i— fiz j—1 11
G) = AG=D+elfy = f)al-1) (D RN GIESED SR PES)
Solving the above recurrence, we get (iksik+1)EP;
j Now, from Eqn. 9 in section III-C
A(4) Z —fii)a(l—1) (12 Alb; — bo, ¢ — co)

C Oé(bj — b(), Cj — Co)
If each element of b; and c; is decreased by by = ¢y = 0, A(j) — A(0)

then the objective function of the dual LP is given as follows:

a(j) - oL
Let x = A(b; — bg,c; — ¢ . € < .
(b5 = bo, ¢ — <o) a(j) < 6L+ ZZ(fi — fiia(i—1)  (15)
= > (B = b + (¢ = ) Dpas =t
i#S,T Now, in order to get an upper bound on «(j), we let all the
_ Z bzel +c D:mm _ Z bie' +ci Dl a(i)’s, where 1 < ¢ < j — 1 to be as large as possible i.e.
i#£S,T i#S,T Vi:1<i<j—1,
= AG) - A() L
a(i) = 6L+ ZZ(fl —fiial—=1)  (16)
i.e. A(b] - bo, Cj — Co) = A(]) — A(O) (13) =1
Similarly, if each element of b; and c; is decreased by Thus
bo = co = 0, then the length of the shortest path can be aj) < a(j—1)+ f(fj — fis)a(j —1)
computed as follows: N ¢
. €
< a-DA+=(f5 — fi-1)
The shortest path P; of length oy is S, 41,42, ...5%, 1. Now, . ¢
let y = Ip, (bj — bo, cj — co) be the length of P; in the metric < afj— 1)e?(fj7fj*1)
I(bj — bo,c; — co),where by = co = 6. Then a(j) < a(0)6§f-7
Yy = ZS i1 (b bOa Cj — CO) + lu i2 (b bOa Cj — CO) + 0‘(]) < 6Le%fj a7

k#1

> g (b = bo,cj — co)

(iksik41)EP;

Thus, at iteration ¢, when the shortest S-T path has length
greater than or equal to 1, the following inequality holds

= (] =)+ (b — 0GB}, + L<a(t) < oLeth
k#1 ' . < < 61 as)
Z (b;" _ bz)k)(ﬁdzk,szA ) ft ln(E)

(ik k1) EP; Thus, despite the modifications to the Garg-Koenemann

= (c;--1 —-4)+ (b;:1 — )ﬂdll,lz algorithm to adapt it to our problem, we see that the bound
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obtained in the above inequality is exactly the same as that
obtained in [1].

Although the algorithm chooses the shortest path based on
data and energy utilization of nodes along the path, neither
the remaining energy nor the remaining data at each sensor
is actively monitored. Hence, it would be interesting to see if
the flow f; is feasible. We analyze the feasibility of the flow
in section IV-B.

B. Scaling

Whenever, b¢ of a node ¢ has increased, the node has been
on a path whose length is strictly less than 1. If this had not
been the case, the shortest S-T path had a length greater than 1
and the algorithm should have terminated. Moreover, the b’ is
increased by a factor of at most (1+¢). Thus b} < (1+4¢). Now,
if b’ is increased « times during the execution of the algorithm,
in the worst case all these = increase operations completely
utilize the energy e’ of node 7. Thus, in the worst case bl =
§(1+ €)® < 1+ ¢, which implies that © < logy4.(*£<). The
factor by which the node i is over-utilized is ¢ is z. Thus by
scaling f; down by a factor of logH_E(%), we can ensure
that the energy constraint is not violated.

If b is increased z times, ¢' is also increased at most x
times. Thus, it can be seen that even the data constraint is
violated by at most a factor of logl+5(1+€) Thus, a single
scaling operation ensures that both the energy and the data
constraints are satisfied.

Thus, there exists a feasible flow of value quﬁ
14€
Similar to [1], the ratio of the values of the dual to the

primal solutions is

¢ 1+e
—1091+eT
t

’y =
As shown in [1], if

§=(1+e((1+eL) ¢ (19)

v < (1—6)_2 (20)

Thus to get within a factor of (1 4+ w) of the optimal, € is
given as follows:

1
€<\ —

14+w @D

Thus, the algorithm mentioned in section IV can solve the
multi-commodity flow problem and produce results arbitrarily
close to the optimum.

Number of Iterations:

From the analysis in this section, we observe that the factor
by which a node ¢’s energy is over-utilized is at most
logi+e=3 1te Thus, the number of iterations in Wthh i is the
bottleneck on the shortest path is at most log1+5 . There
are a total of N nodes, and thus, the total number of iterations
is O(Nlogy e 1£).

In the next section, we discuss a few issues which might
be important for the implementation of the approximation
algorithm in a sensor network.
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V. IMPLEMENTATION OF APPROXIMATION ALGORITHM

We now describe an iterative implementation of the algo-
rithm mentioned in section IV. We refer to this implementation
as A-MAX. In this implementation, the edge length metric is
the one used by the approximation algorithm. The energy of
each node i is initialized to e?, while the data of each node is
initialized to D7 . bY and ¢ are initialized to 4.

In each iteration the sink chooses a node with the shortest
path to it as a candidate nodes. A sensor node is called active
if it has been chosen by the sink as a candidate node at any
iteration. Sensor nodes that are 1 hop away from the active
nodes are called threshold nodes. Initially only the sink is
active, while all the nodes within a distance R from the sink
are threshold nodes. Each iteration k consists of the following
steps:

1) The sink sends a message containing the iteration num-
ber k to its neighbors. It also advertises its shortest path
to the sink having length 0.

2) Each neighbor i initializes its shortest path to the sink
Le. pk to ﬁbl dz sink*

3) The active and the threshold nodes execute a distance
vector algorithm using $bd;; + by, as the length of
edge (i, 7). Updates from downstream nodes are ignored
to avoid loops. After the algorithm terminates, each of
these nodes has the length of the shortest path and the
next hop to the sink.

4) Each node ¢ that is either a active or a threshold
node sends a response towards the sink. This response
contains the value of p}, +c%. The response is also used to
find the capacity of the path along which it is forwarded.
The capacity is found as per Eqn. 10 in section IV. The
forwarding process sets up a reverse path state in all the
nodes along the path.

5) The sink selects the node z with the minimum p? as a
candidate node. If p* is greater than or equal to 1, the
sink sends a message to all active nodes to scale down
their flows by the scaling factor mentioned in section
IV-B and then send their data towards the sink. In this
case the algorithm terminates.

6) If p* is less than 1, the sink sends a message addressed
to the node z containing c i.e. the minimum capacity
along the path. The message is forwarded based on the
state created in an earlier step. As the message is being
forwarded back along the reverse path, each node sets
z to be downstream of itself. This is used to avoid
loops. For each node ¢; along the path, the value of
bt .1 is updated using the value of bj! according to the
algorithm.

7) The node z updates its routing table to augment the flow
to its current next hop to the sink by c. It also updates
Cryq Using ¢ according to the algorithm.

8) Go to step 1.

Message Complexity:

In each iteration, in the worst case all the N nodes will par-
ticipate in the distance vector algorithm. Thus, from standard
analysis of distributed Bellman Ford algorithm, the number of
messages exchanged due to the distance vector algorithm in
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each iteration is O(N|E|), where |E| is the number of edges
in the graph G [15]. For step 4, the response of each active
or threshold node would be forwarded O(N) times. Since,
there are a total of /N nodes, the total control overhead in
step 4 is O(N?). Steps 5 — 6 in the implementation require
O(E) messages in each iteration. Since |E| = O(N?), for
each iteration, the total message complexity of A-MAX is
O(N3).

As shown in section IV-B, the number of iterations is
O(Nlogy . %) and hence the total message complexity of
A-MAX is O(N*logy 1 1£).

A. Parameter Settings and Implementation Concerns

In A-MAX, each node i initializes by = ¢ = 6. As shown
in Eqn. 20 in section IV-B, ¢ is dependent on ¢ and L. €
depends on the (1 + w) approximation needed as shown in
Eqgn. 21 in section IV-B. As shown in section IV-A, L is the
largest value of {14 8d; ; + Z’EZ:;HI)E% (B3, i, + 1)}
Thus, L depends on the topology of the network. However, it
is possible to get a loose bound on L given as follows:

L < (N-1){BR*+1} (22)

i.e. L is maximum when all the nodes are arranged in a linear
fashion and just within range of each other.

In simulating this implementation however, we find that this
loose bound on L results in extremely small values of § (in
fact so close to O that it has to be manually set to an arbitrary
small positive value to make it work). As a result, A-MAX
takes a large number of iterations to converge for small values
of w. Hence, as we shall see in the simulations section VII, A-
MAX may not be suitable for practical implementations. This
motivated us to look for the fast, practical heuristics described
in the next section.

VI. FAST GREEDY HEURISTICS
A. Motivation

We can observe that the implementation of the approxima-
tion algorithm A-MAX consists of 2 phases. First, there is
a negotiation phase, in which nodes do not actually transmit
data but try to make decisions about how much data to send
and how much data they will relay for other nodes. Since
neither the remaining energy nor the remaining data at a
sensor is actively monitored at the negotiations phase, some
nodes may be over-committed (i.e. may have negotiated to
send or receive more data than allowed by their energy and
data constraints). In the second, data transmission phase, each
node scales down the data that it has to send or receive from
each of its neighbors to accommodate the constraints and
only then starts the data transmission towards the sink (T).
This cumbersome two-phase process is one reason A-MAX is
inefficient in implementations.

Another observation that can be made about the maximum
data extraction problem is that the reception costs make it
expensive for nodes to relay other nodes’ data. As a result,
one of the characteristics of the optimal solution is that each
node should only commit to relay another nodes’ data if it has
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energy remaining after transmitting all its own data - in other
words, it behaves selfishly.

Motivated by these observations, we seek to develop ef-
ficient heuristics that avoid the 2-phase overshoot and scale
down iterations of A-MAX and incorporate selfish, greedy
behavior. It turns out that these heuristics are much faster in
implementation and with the right metric can perform very
well in practice.

B. Description of Heuristics
The key features of the heuristics we develop are:
1) Each sensor is greedy. i.e if a sensor has the shortest path
to the sink, it accords priority to sending its data first.
If after sending its data, the sensor exhausts its battery,
it disconnects itself from the network.

2) There is no scaling operation.

3) Each sensor actively monitors its remaining battery

power and remaining data.

We explore three variants of the greedy strategy. Each
variant differs from the other in the link metric it chooses
for distance vector routing.

Exponential Metric: This metric is based on the algorithm
mentioned in section IV. At iteration k, if a sensor ¢ receives
or sends data, it updates its b as follows:

b, = bp_i{e™}
where A is the current battery utilization of sensor i i.e. the
ratio of the battery power spent (till and including iteration
k) to the total battery power. This update is approximately
the same as that mentioned in section IV, when ¢ < 1 (as

1+ x =~ e*, for small z). If the data sent is its own data, the
sensor ¢ also updates its ¢* in the same manner:

k= Ca{e?™}
where \j is the current data utilization of sensor i i.e. the ratio
of quantity of its data sent (till and including iteration k) to
its total data quantity.

However, the initial values of b*’s and ¢’s are still to be
chosen. Intuitively, if all sensors have the same value for the

(23)

(24)

ratio of %, all these sensors can be treated the same.
However, if a few sensors have a low value for this ratio,
which implies that they can carry data from other sensors, it
would be advantageous to choose these sensors as the next
hop towards the sink. Hence, we set the initial values of b’s
and c¢*’s are follows:

) Dt
i = Zmes 25
0 e (25)
. D?
d = Zmes 26)
e’L

We will refer to the Exponential Metric based implementa-
tion as E-MAX. For this implementation we assume € < 1.

To illustrate the importance of this metric, we choose 2
other variants of the distance vector implementation. Both
these variants do not use b*’s and ¢’s in the implementation:

Distance Metric: The length of an edge (4, ) is d;;. This
metric is constant across iterations. We refer to this variant of
the implementation as DIST-MAX.

IEEE INFOCOM 2004



Hop Count Metric: The length of an edge (i,5) is 1 iff
d;; < R. This metric is also constant across iterations. We
refer to this variant of the implementation as H-MAX.
Number of Iterations:

In all the above greedy heuristics, at each iteration, a node i’s
energy or data is completely exhausted. Since, there are a total
of N nodes, the number of iterations is O(N).

C. Implementation of Heuristics

The implementation mentioned in section V can be eas-
ily extended to incorporate the greedy heuristics with the
appropriate edge length metrics. However, there are some
differences:

1) In E-MAX, each node i initializes b}, and c} according

to Eqn. 25 and Eqn. 26 respectively. At each iteration

k, E-MAX updates the value of b% and ci as per Eqn.

23 and Eqn. 24 respectively. H-MAX and DIST-MAX

do not need any specific initializations for these values.

2) Each node ¢ actively monitors its remaining battery and

remaining data levels. While calculating the capacity of

the path, the remaining battery power and remaining data

are used as opposed to e’ and D!, . used in A-MAX. If

the battery level of a sensor hits 0, it ceases to be a part

of the network and hence does not execute the distance
vector algorithm.

3) While sending a response to the sink, each active and
threshold node sends its remaining data in addition to
the length of its path to the sink. The sink chooses a
candidate from those nodes that still have remaining data
to send.

4) At each iteration, the candidate node immediately sends
data to the sink.

5) There is no scaling operation involved. The algorithm
terminates if the sink detects that all the nodes® in
the network do not have data to send or if the sink
is disconnected from the network due to its first hop
neighbors dying out.

Message Complexity:

For these greedy heuristics, the message complexity at each
iteration is the same as that for A-MAX i.e. O(N?). Since, as
shown in section VI-B, the number of iterations is O(N), the
total message complexity is O(N?).

In section VII, we describe our simulation scenarios used

to compare the different approaches and the results.

VII. SIMULATIONS AND RESULTS

We simulated A-MAX, E-MAX, DIST-MAX and H-MAX
using a high level simulator. We ignore MAC effects in this
simulator.

The simulation set up consists of 50 nodes randomly de-
ployed in an area of 0.5 km x 0.5 km. Each node has a radio
range of 0.2 km. We use the first order radio model used in
[5]. In this model, a sensor consumes €... = 400nJ/byte
for running the transmitter or receiver circuitry and €qyn, =
800p.J /byte/m? for running the amplifier circuitry. Thus 3, =

2This might need the sink to have an approximate estimate on the number
of nodes in the network.
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€clec- In order to send a single byte, the sensor has to run its
transmitter and amplifier circuitry. Now, a sensor can receive
data only from sensors within its range i.e. within a distance
of R. Hence,

2
€elec T 6amp-R

By =

Thus, using the definition of 3 from Eqn. 2 in section III-B,

6 ~ 1+ Samp p2

€elec

Converting distances into km units, for R = 0.2 km, we get
[ = 81. We use this value of 3 in our simulations. We assume
that the maximum energy is 1J as in [5]. As we mentioned
earlier in section III-A, our model assumes that a reception of
a single unit(byte) consumes one unit of energy, we normalize
the maximum energy in terms of bytes that can be received.
From the value of €., it can be shown that 1J of energy
allows 1250K receptions. Thus, in our simulations we set
the maximum energy to 1250K. The maximum data is set
to 1000K bytes. We also count the number of transmissions
and receptions due to exchange of control messages in the
various implementations (that are appropriate modifications of
A-MAX). These control messages include the distance vector
updates (step 3), messages forwarded during the response of
an threshold node or active node to the sink (step 4) and
the messages forwarded during the response of the sink to
the candidate node (step 5 and 6). These control messages are
assumed to be of 1 byte. This is a reasonable assumption as the
control messages usually contain a single real valued quantity.
Moreover, if ¢ transmits a control message to j, we compute
the energy spent in the control message as ,Bdfj for node ¢’s
transmission and 1 for node j;’s reception. This helps us to
quantify the overhead of A-MAX, E-MAX, DIST-MAX and
H-MAX in terms of the percentage of energy at each node.

As mentioned at the end of section II, the amount of data
collected in our problem scenario is mainly dependent of the
energy of the first hop sensors and the amount of data they
have. Thus, in our simulations we define a few good nodes. A
node i is a good node if it has a very low value of D:e"i” . These
good nodes do not have any other special capabilities. For a

good node i, ¢! = 1250000 (1J of energy) and D ,, = 10
(bytes) of For a node j that is not good, e = 1250 (0.01J of
energy) and D! .. = 1000K = 1M (bytes). As we show in

our results, when all nodes have the similar values of energy
and data, the three heuristic implementations perform very
similar and give close to optimal performance. Varying the
energy of the good nodes, their number and their placement
helps us to outline scenarios where E-MAX significantly
outperforms DIST-MAX and H-MAX.

A. Objectives

We were interested in studying the performance of A-MAX,
E-MAX, DIST-MAX and H-MAX in terms of optimality of
solution produced and the overhead. We compared the solu-
tions produced by these implementations with that produced
by solving the LP specified in section III-B using Ip_solve. The
objectives of our simulations were to study the following:

1) Effect of § and w on the performance of A-MAX.
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Fig. 2. Effect of number of iterations on the solution produced by A-MAX
due to varying 6. Here w = 0.1. The x-axis is plotted on a log scale

2) Effect of good nodes on the performance of E-MAX,
DIST-MAX and H-MAX.

3) Effect of density on the performance on E-MAX, DIST-
MAX and H-MAX.

1) Effect of § and w on A-MAX: We discuss the scenario
when there are 20 good nodes in the network and 4 of them are
in range of the sink. However, the conclusions are applicable
to most of the scenarios we examined.

For a given w, € can be easily determined using Eqn. 21
in section IV-B. We set ¢ to the maximum value permitted
by Eqgn. 21 for a given w. In our case, if € is very small,
due to a very loose bound on L, § =~ 0. Hence, for the
implementation to work correctly, we set § to small non-zero
values. As mentioned in section V-A, the value of § affects
the number of iterations of A-MAX and the optimality of the
solution produced.

For the aforementioned scenario, we use the following
values of 4: 0.0000001,0.000001,0.0001,0.01 and 0.1. We
set w = 0.1. We count the number of iterations taken by A-
MAX across these values. We notice that as J decreases, the
number of iterations increases.

Figure 2 shows the effect of the number of iterations (by
varying 0) on A-MAX. As the number of iterations increases
(6 decreases), A-MAX produces solutions that are closer to
the optimal.

We also varied w by fixing § = 0.0000001. Figure 3 shows
the effect of the number of iterations (by varying w) on the
optimality of the solution produced by A-MAX. We used the
following values of w: 0.01,0.1,1,3,5,7 and 10. As w is
increased, the number of iterations decrease. We also observe
that at w = 10, the solution produced by A-MAX is around
65% of the optimal, while at w = 7, the solution is around
80% of the optimal.

Figures 2 and 3 demonstrate the trade-off between the
number of iterations and the quality of solution obtained by
A-MAX. In general, for solutions that are arbitrarily close to
the optimum, a greater number of iterations are needed. This
translates to a higher number of control messages and hence
a greater overhead. In all these scenarios, the overhead of A-
MAX measured from simulations precludes its implementation
in an energy constrained sensor network.

These curves justify the need for fast heuristics that we
developed. We evaluate the performance of E-MAX, DIST-
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Fig. 3. Effect of number of iterations on the solution produced by A-MAX
due to varying w. Here § = 0.0000001. The x-axis is in log-scale

MAX and H-MAX next.

2) Effect of good nodes on E-MAX, DIST-MAX and H-
MAX: Our initial aim was to understand the effect of € on
E-MAX. In a sample scenario with 10 good nodes placed at
random, we varied € from 0.1 to 1 in steps of 0.2. Across
all these scenarios, the solution produced by E-MAX remains
unchanged. So, in the rest of our simulations with E-MAX,
we arbitrarily set e = 0.1.

From our preliminary study, we observe that if all the nodes
in the network have similar amount of energy and data, then
all these greedy implementations perform similarly. However,
the importance of the exponential metric becomes apparent as
we vary the energy, the number and the placement of good
nodes in the network.

Initially, we choose these good nodes at random. Figure
4 shows the effect of the energy of the good nodes. In this
scenario, we fix the number of good nodes to be 20. We vary
their energies from 0.1 J to 1 J (and appropriate reception
units) in steps of 0.2. We observe that the energy of the good
nodes has a significant impact on the relative performance
of E-MAX, DIST-MAX and H-MAX. The performance gap
between E-MAX and the other heuristics increases as the
energy of good nodes increases, all other factors remaining the
same. At lower values (around 0.1 J) of energy for good nodes,
all the 3 heuristics perform similarly and close to optimal. But
we would like to see if the significant difference between E-
MAX and the other heuristics at high energy values of the
good nodes is independent of other factors like fraction of
good nodes and their placement. Hence in the subsequent
simulations, we set the energy of the good nodes at 1J.

Figure 5 shows the effect of increasing the ratio of the good
nodes in the network. In these scenarios, E-MAX produces
solutions that are within 1-20% of the optimal. It also gives up
to 240% improvement (more data collected) over both DIST-
MAX and H-MAX. This happens when the fraction of good
nodes is 0.6. At the extremes of the x-axis, when almost all
nodes are similar in their energy and data levels, all the 3
implementations perform equally good and give very close to
optimal solutions. From the topology, we were able to deduce
that the increase in the number of good nodes leads to an
increase in the number of good nodes close to the sink. While
E-MAX is able to take advantage of these nodes, the other
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Fig. 4.  Effect of the energy of good nodes on E-MAX, DIST-MAX and
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Fig. 5. Effect of fraction of good nodes on E-MAX, DIST-MAX and H-

MAX. The area of deployment is 0.5 km x 0.5 km

naive heuristics do not. As the fraction of good nodes increases
beyond 0.8, the amount of data to be collected is far lower than
the amount of energy in the network. Hence all the schemes
yield close to optimal solutions.

These observations suggest that not only the fraction but
also the placement of these good nodes relative to the sink
affects the relative performance of the 3 greedy implementa-
tions.

To understand the effect of the placement of the good nodes
relative to the sink, we fix the number of good nodes to 15 and
increase the number of good nodes within the range of the sink
(in our scenario, the sink had 13 neighbors). These good nodes
are chosen at random. Intuitively, as the number of good nodes
within the range of the sink increases, H-MAX and DIST-
MAX should perform as good as E-MAX. But figure 6 shows
otherwise. This illustrates the importance of the placement of
the good nodes. If there is a connected “back-bone” of good
nodes i.e. a series of good nodes in range of each other and in
range of the sink, E-MAX is able to take advantage of them as
opposed to DIST-MAX and H-MAX. This “back-bone” helps
in gathering more data. E-MAX is able together around 500%
more data than DIST-MAX (when the number of first hop
good nodes is 12). The metric used by E-MAX helps to route
the data along such “back-bones”. Even if there are only 5—6
good nodes (out of 13 neighbors) at the first hop, the high
density of the scenario considered leads to the existence of
such “back-bones”. When the majority of the nodes i.e. 13
(maximum possible in this case) of the 15 are within range of
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MAX. The area of deployment is 1 km x 1 km.

the sink, DIST-MAX and H-MAX start performing better. It
would be interesting to examine the existence of such “back-
bones” in lower density deployment. Hence, we next vary the
size of the deployment area and study the performance of E-
MAX, DIST-MAX and H-MAX

3) Effect of Density on E-MAX, DIST-MAX and H-MAX:
We randomly deploy the same number of nodes, using the
same communication range in a bigger area of lkm x lkm.

The performance trends shown in Figure 7 are very similar
to those in Figure 5. Again E-MAX gives solutions that are
within 1 to 20% of the optimal solution. E-MAX can also give
more than 200% improvement over H-MAX and DIST-MAX.
This occurs when the fraction of good nodes is 0.8, while in
the higher density case, this occurs at 0.6. This is because
in a sparser network, due to nodes being more spread out, a
greater fraction of good nodes is needed to create a set of well
connected good nodes or the “back-bone”.

Across all of the scenarios mentioned in sections VII-A.2
and VII-A.3, E-MAX, H-MAX and DIST-MAX took signif-
icantly lesser number of iterations as compared to A-MAX.
For example, in the scenario used for the performance of A-
MAX in section VII-A.1, E-MAX took only 36 iterations and
gives a solution that is 99.9% of the optimum. Such significant
reduction in iterations were observed across all scenarios used
in our study. This translated to an overhead in the range of
5-10%. This overhead shows that these greedy heuristics are
suitable for implementation in an energy constrained sensor
network.
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When all nodes have similar data and energy levels, all these
greedy implementations perform similarly. However, if there
are nodes in the network with very high energy and low data,
E-MAX (due to the metric based on the Garg Koenemann
algorithm) significantly outperforms the other approaches. In
some scenarios it results in collecting up to 500% more data
than H-MAX and DIST-MAX. In most of the scenarios we
used, E-MAX gives flows that are within 15% of the optimum.

VIII. CONCLUSIONS

In remote monitoring sensor network applications where
data does not need to be gathered continuously, the key prob-
lem of interest is that of extracting the maximum information
from the local storage of network nodes, post-sensing. We
have formulated this problem as a linear program in this paper,
and presented and analyzed a 1 + w iterative approximation
algorithm for it. For ease of distributed implementation, we
then developed a greedy heuristic that incorporates the link
metric suggested by the approximation algorithm. Our sim-
ulation results enable us to conclude that this heuristic, the
E-MAX algorithm, performs near-optimally (within 1 to 15%
in most scenarios) and significantly better than other shortest-
path routing approaches.

While the problem formulation we presented does not
explicitly incorporate fairness, it could be extended with some
modifications to incorporate different priorities or even equal
priorities on the data from sensor nodes by varying the data
constraints on individual nodes. A thorough examination of
fairness issues is one of our areas for future work.

Other future work could involve the incorporation of data
aggregation. Existing results pertaining to maximum lifetime
problems with aggregation, such as [5] and [14], suggest ways
in which our work may be extended in this direction.
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