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Abstract
In this paper, we propose the power control problem for cognitive radio networks (CRNs) that
maximizes the total utility of the secondary users (SUs). We use the interference temperature
constraints to protect the primary users (PUs). The utility functions of SUs can be any increasing
functions. We formulate the power control problem as monotonic optimization that can be solved in

centralization to achieve the global optimum.
Key words: Cognitive radio, power control.

1. Introduction

Nowadays, the rapid development of wireless
services and applications makes the using of
frequency is more significant. Therefore, the cognitive
radio is proposed in order to improve the radio
spectrum utilization and is interested by a lot of
researchers. There are two approaches for dynamic
spectrum access in CRNs: spectrum overlay and
spectrum underlay. In spectrum overlay, the secondary
users (unlicensed users) sense the available channels
that are not in used by primary users (licensed user)
and transmit in these channels. On the other hand,
SUs in spectrum underlay approach can transmit
simultaneously on the same channels with PUs.

In this work, we use spectrum underlay approach for
the SUs to access the channel. We propose the power
control problem that maximizes the total utility of the
SUs. Because of the non-concave property of
log(1+SINR), some previous works considered the high
SINR regime where the SINR of each link is much
greater than 0 dB. The /og(7+SINR) becomes
log(SINR) and  optimization problem can be
transformed into convex optimization problem in the
form of geometric programming (GP) [1]; hence it can
be efficiently solved for global optimality. However, we
consider the general SINR regime and the utility
functions can be any increasing function without any
assumptions. And in order to keep the interference to
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the PUs under the threshold, we use interference
temperature limit, introduced by Federal
Communications Commission (FCC), as the constraint
to protect the PUs from SUs. The power control
optimization problem is formulated as Monotonic
Optimization (MO) problem which is introduced in [2]
and first applied into network optimization by Qian et
al in [3]. By applied the Polvblock outer approximation
algorithm in [2], we can achieve the global optimum
for our proposal.

2. System Model and Problem Formulation

1. System model

We consider a cognitive radio network consists of
links denoted by set L {1.,2,...,L}. The SUs
communicate in ad hoc mode and coexist with primary
network which has M PUs. The signal to interference
noise ratio (SINR) of each secondary link / can be
expressed as:

G,p
7(p) =t
: ZGilpi +7,

i#l
where the p, is the transmission power from the
transmitter of link / and Gy is the channel gain from
transmitter of link i to the receiver of link [/ . n
denotes the additive noise at the receiver of link /.
From Shannon capacity formula, the corresponding
data rate on link [ can be expressed as:

(1)
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R, (p) = log(1+7,(p)) (2)

In order to protect the PUs from the SUs, FCC
introduced the concept of interference temperature
limit. The maximum interference tolerance for PUs can
be calculated as

Qmwc — kTma)C

max

where k is Boltzman's Constant and T is the
interference temperature limit. We assume that SUs
can be aware of the total interference to PUs and
interference threshold.

2. Problem Formulation
In this paper, our objective is to maximize the total
utility of all SUs:

ZU;(R;(p))

where U[.) can be any increasing function. The
limitation of the power at each SU can be expressed
as the constraints on the optimization problem:

0<p <p™ 1</<L
Our power control problem can be expressed as:
L
(P1): max > U,(log(1+7,(p)))
=1
st. 0<p <p™ 1</<L
L
> h,p <ON 1<m<M (3)
=1

where £, is the channel gain from secondary link [ to
primary user m and is known by secondary network.
The last constraints guarantee the interference from
secondary network to primary network is below the
interference tolerance.

3. Monotonic Optimization and Power Control Problem

1. Monotonic Optimization
In this subsection, we want to remind about the
monotonic optimization (MO) based on [2].

Definition 1 (Normal set): A set G < R is called

normal if for any two points x, x'e€ R; such that x' <x,

if xe G then x'€ G too.
Proposition 1. The intersection and the union of a
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family of normal sets are normal sets.
Definition 2 (MO): An optimization problem is called

MO if it can be represented by the following
formulation:

max Ax)

st xeG (4)

where set G < [0.b] © R] is a nonempty normal

closed set and the objective function Ax) is an

increasing function on [0,b].

Definition 2 (Upper boundary): A point ye R is
called an upper boundary point of bounded normal set
G if yeG whileK, ={y' e R |y'>y} e {R]\G}. The

set of upper boundary points of G
boundary of G and is denoted by 0 G.
Proposition 2: The maximization of Ax) over G, if it
exists, is attained on 0'G.

is the upper

Definition 3 (Polyblock): Given any finite set T R;

with elements v;, the union of all the boxes [0,vi] is
called polyblock with vertex set T (Box [0,vi]={x|0<x<
vi}).

Definition 4 (Proper). An element ve T is proper if
there does not exist v'eT, such that v'# v and v'> v.
Set T is a proper set if all of its elements is proper.
Proposition 3. If G in (4) is a polyblock, then the
optimal solution is attained at one proper vertex of this
polyblock.

Definition 5 (Projection): Let G C[0,b] be a nonempty

normal set, for every point z € R} \ {0}, the half line

from 0 through z meets 0 *G at a unique point mg(z),
which is defined by:

75(2)=Az,A =max{a 20|aze G} .

The detailed illustrations about these propositions,
definitions and their proofs are omitted due to space
limitation. Interested readers can refer to [2] for more
details.

2. Power Control Problem
The power control problem (P1) can be rewritten as:

(P2): max TI'(z)= iU,(IOg(Zz))

st. zell,
where the feasible set I is defined by:
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N={z|1<z, <1+y,VieLl,peP},

with
L

P={p|0<p, <p/ > h,p, <O N1<m< M},
=1

The feasible set I1 is the union of infinite number
of boxes, each box corresponds to a feasiblepeP.
Therefore by proposition 1, II is normal set.
Together with T'(z) being an increasing function in z,

problem (P2) is a MO problem. Hence we can solve
this problem using the Polyvblock Outer Approximation
Algorithm in [2] with slight modifications. The details
are shown in Algorithm 1:

Algorithm 1:

Initialization: Select e=0 (tolerance). Let X be feasible

solution available and current best value (CBV) equals

to f(;o). Let7, = {b}, where

b =1+ Gy
m

It is obvious that box [0,b] containingIl. Set k=1.

Step 1: Select z*eargmax{f(z)|zeT,,z>1}

Compute  x*=7z,(z"). Determine CBV =

.
max{ f(x ]),f(xk)} and current feasible solution

—k
X corresponding to that value.

Steo 2: The set T, is attained from

(T \{z" ) vz —(zF —x[)e,,i=1,...,I} after removing
the improper elements.

—k
Step 3: If(1+€)[(x ) >T'(z"), termination. Otherwise,
k= k+1 and return to Step 1.

The projection 7,(z*)=A4z" in Step 1 can be
obtained by solving the max—min problem:

A, =max{1| Az e 1}

I<I<L

- max{4| 2 < min T /®) e py
Z

= max min & (5)
peP I<I<L z,'g (p)

where f,(p)=D_.G,p,+mand g(p)= Y., G,p,+1;.

iel iel i#l
This is the generalized linear fractional programming
problem that can be solved using the Dinkelbach-type
algorithm as in [3].
In algorithm 1, after each iteration, we always have

I[TcO,,, cO, . where O,is the polyblock with its

vertex set 7, . By this way, we can construct a series

of polyblocks containing Il that approximate the
normal set Il with an increasing level of accuracy.
The geometric illustration of that step in case of two

dimensions is shown in fig. 1. z'andz’® are attained

by {z—(z,—(n;(2)),)e,,i=1,2} . respectively.

2 . .
However, z° is improper so we remove it and the

proper set after this is {z', v} .

= N1

Fig.1. Geometric illustration of shrinking the outer polyblock

is infinite, each of the

(2"}, {x"}
subsequence converging to an optimal
Therefore (P2) converges to global optimal.

Theorem 1. If algorithm 1

generated sequences contains a

solution.
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Proof: The proof of Theorem 1 is the same as the
proof of theorem 1 in [2] and is summarized as
follows. If algorithm 1 is infinite, it generates at least

P / / l}
one infinite subsequence z',z%,...,Z",... such

that z' =z —(zl —x})e, lt's obviously that

z">7">..>72">..>0. So, there exists z such

that z°' = lim z* . This implies z* —z* —0 , and

k—>+o0

hence zi —xi —0 On the other hand,

zp—xp =(1=24)z; and zi>1then 4, >1, that

I A

means z" —x*—>0 Consequently,

z = lim z* = lim x* belongs to I and
k—+o0 k—+

f(@)= f(x),Vxell , ie, z is global optimal

solutiono

Because of the tradeoff between convergence time
and the optimality, we can select e>0 and algorithm
will converge to e—optimal solution.

4. Numerical results

We consider the cognitive radio network with 3 links
(i.e., (=3) and one PU (i.e., M=1). Assume that

p/ " =05mW and 1, =05uW for all links. We

consider a realization of the channel

represented by matrix G:
0.075 0.015 0.020

0.015 0.045 0.002
0.020 0.002 0.085

gains,

G

The utility function is selected U,(x) =x in order to

maximize the total throughput of the secondary
network. Fig. 2 shows that the total utility of secondary
network converges to the sub-—optimal solution with
the error tolerance e chosen equals to 0.05.

347

20

T T
—A— CBV
—&— Value at Zn

i
o
T

Aggregated Utility

[N
o
T

. . . .
15 20 25 30
iteration t

.
10 35

Fig.2. Total throughput when error tolerance €=0.05.

5. Conclusion

In this paper, we formulate the power control
problem as Monotonic Optimization problem. The
algorithm 1 is guaranteed to converge to global
optimal solution despite of non—convexity of the
problem. Therefore, our proposal provides benchmark
for performance evaluation of the other power control
heuristics in this area.
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