
 Rule-based Engine

Design for video surveillance applications

Tran Hoang Dai, Tran Hoang Nguyen, Choong Seon Hong

{dai.tran, nguyenth, cshong}@khu.ac.kr

Department of Computer Engineering, Kyung Hee University

Abstract

In this paper, we present a new software module that allows flexible reconfiguration of video

surveillance system behaviors, which was built based on Vinotion’s software engine. Vinotion

has developed a set of object detection and motion tracking software libraries, which are

used in many of their video surveillance systems. The result helped Vinotion’s engineering

team reduces time and effort to deploy new surveillance systems.

1. Introduction

Intelligent video surveillance is a challenging problem

for researchers and software firms. ViNotion [1], a

young company with a talented team, wants to face

the challenge. With a strong focus on video and image

analysis, the team has been successful in developing

applications for video surveillance system, thanks to

its advanced software for object detection and motion

tracking. In order to extend their software framework, a

new module allowing flexible configuration of

surveillance system behaviors is required. This new

module is called a Rule-based engine. The engine

helps users to easily create and modify contextual

information and custom behaviors (rules) for

controlling the surveillance application. It could be

seen as an interface between surveillance system and

ViNotion software framework.

2. Vinotion’s video surveillance engine

At ViNotion, the team had been successful in

delivering several applications for video surveillance

system. They developed their own software engine,

which provides object-detect1)ion and tracking when

processing video images. By incorporating this

framework into a video surveillance system, the

camera (controlled by the system) can interpret the

captured scene, and let the system distinguishes

different situations that are happening. Thus, the team

can integrate intelligent behaviors into the system,

enabling it to act smartly for a variety of scenarios. For

instance, the system can send an alarm or record the

video. Here are few examples of such a system.

Example: In Figure 1, a virtual fence (green area,

defined by the surveillance system) is placed close to

the physical fence. Whenever a person crosses that

virtual fence, the surveillance system will trigger an

alarm. So for this scenario, no alarm should be

triggered if a bird or a rabbit (animals) would cross the

fence.

Similarly, in Figure 2, a customer wants to protect his

fish pond from fish-eating animals (cat, heron, etc). In

the picture below, the thermal camera captures a

video where a heron just landed next to the customer’s

fish pond area (green and blue areas, defined by the

surveillance system). In this situation, the surveillance

system is configured to raise an alarm when animal

like a bird is detected, but not if a person approaches

the pond to feed the fish.

Figure 1: Human crossing the virtual fence

2013 추계학술발표회 논문집

Figure 2: Fish pond protection

3. The problem

Although the team gained some successful results for

current applications, in the long run, some problems

still remain. Let us have a look at Figure 1. In this

scenario, the team has to provide an algorithm that

allows the surveillance system to only recognize

humans. While in the scenario depicted in Figure 2,

they have to modify the algorithm to apply detection

only to fish-eater animals like a heron but not humans.

This is not very convenient since for each case, they

have to rewrite some pieces of the software to adapt

to the requirements, and also define new areas of

interest in the code. Moreover, if customers want to

have more functionality from the system, the team also

has to reconfigure the current working software,

adding new modules along with old ones, and then

deliver again. These are the problems that ViNotion

would like to tackle.

Figure 3: Deployment problem

4. Proposed solution

To avoid hard-coded solution, we build a new rule-

based engine module and a software application on

top that follow the scheme of Figure 4.

The rule-based engine module applies the Business

rule engine model [2] with forward-chaining type [3].

Its logic behaviors are defined by a set of data

represented in xml format:

- primitive types such as a point, multi-points, line,

color.

- Contextual type such as an area (formed by multiple

points and color); or a tripwire, which is formed by

multiple lines.

- Behavioral types such as event, action and

behavioral rule to connect events with actions for

intelligent behavior.

To form one behavioral rule, a combination of different

xml data is grouped into one large xml container

element. The rule-based engine reads and analyzes

the conditions that are happening on the captured

video and perform actions that are defined in the xml

container.

5. Application interface

To put the rule-based engine into practical usage, we

built an easy to use application that allow user to

define rules and test the result directly. The interface is

illustrated in Figure 5.

6. Conclusion

This rule-based engine module not only helps address

the deployment issues of Vinotion’s framework, but

also extends their video surveillance framework, make

it more powerful and flexible in developing their

system.

Acknowledgement

This paper was supported by NIA (National Information

Society Agency). Dr. CS Hong is the corresponding

author.

References

1. Vinotion, “vinotion.nl”

2. Nagl, Christoph, Florian Rosenberg, and Schahram

Dustdar. "VIDRE--A Distributed Service-Oriented Business

Rule Engine based on RuleML." In Enterprise Distributed

Object Computing Conference, 2006. EDOC'06. 10th IEEE

International, pp. 35-44. IEEE, 2006.

3. Gu, Tao, Hung Keng Pung, and Da Qing Zhang. "A

service‐oriented middleware for building context‐aware

services." Journal of Network and computer applications 28,

no. 1 (2005): 1-18.

2013 추계학술발표회 논문집

Figure 4: Proposed Rule-based model

Figure 5: Application interface

2013 추계학술발표회 논문집

	Main
	Return

