Q-Learning Based Social Community-Aware Energy Efficient Cooperative Caching in 5G Networks

Han Yeo Reum Im, Kyi Thar, and Choong Seon Hong
Department of Computer Science and Engineering, Kyung Hee University, 17104, Republic of Korea
Email: {prosummer, kyithar, cshong}@khu.ac.kr

Abstract—To satisfy the vast demand of data traffic caused by various mobile devices, caching contents at Base Stations (BSs) and User Equipment (UE) has become a promising solution. A lot of recent works have proved that an approach of caching at edge devices is efficient to reduce latency and alleviate backhaul load so that the probability to meet users’ Quality of Service (QoS) is much higher. However, due to the selfishness of mobile users, it is hard to convince users to store contents for other users. In this regard, we consider the social connection between users in order to induce users to store contents for the social community. So, to implement the socially aware Device to Device (D2D) caching, we construct two types of graphs: i) physical D2D graph which is constructed based on users communication over D2D links and ii) logical social graph which consist of a group of people who share the common interest. Then, we formulate socially aware D2D caching problem into Markov Decision Process (MDP). Additionally, we consider the distance and the social ties between users, and mobile devices’ capacity to optimally store contents under the constraint that energy consumption of cellular link is much higher than D2D link. Finally, we solve the D2D caching problem by using Q-learning where the goal is to minimize the total energy consumption over Macrocell Base Station (MBS) and mobile devices.

Keywords—Proactive caching, socially aware networking, device-to-device communication, Q learning, 5G Networks

I. INTRODUCTION

The demand for mobile data traffic caused by various types of devices has increased over the past few years. According to the report entitled Cisco visual networking index, the IP traffic over the world will reach 4.8ZB per year by 2022 and Internet traffic in rush hour is growing much faster than that in a non-rush hour [1]. When it comes to video traffic, it requires not only much more traffic but also lots of higher bandwidth. As a lot of mobile User Equipment (UE) requests tremendous contents to the content server every second, backhaul load between the content server and the base station has become heavier more than ever.

To alleviate the heavy burden on backhaul load, an approach of content caching at edge devices has emerged as a promising solution. This paradigm is called Proactive Caching which means contents are cached at the storage before users request the contents. To deal with this problem, it is important to predict which contents will be requested at a specific time. Moreover, mobile users move everywhere every time so that forecasting users’ mobility has been recognized as a good approach for proactive caching.

One of the recent works has focused on prediction of content popularity and caching proactively [12]. They predict the future class label for each content and the number of requests for each content respectively using Deep Learning. Then, they cache the contents having a high probability to be requested at the base station. Also, in the cloud radio access networks (CRANs), the machine learning-based caching scheme that predicts content request distribution and mobility pattern at the baseband units (BBUs) level is proposed to maximize capacity gain [13].

On the other hand, several literatures have considered the information of social connection between users [2]-[3]. If the social connection between two users is strong enough, there is a higher chance for users to transmit its content to one another. By taking social ties between users and common interests into consideration, a new hypergraph framework for caching in D2D communication is introduced [2]. Also, for improvement of the content offloading over wireless D2D communications, a caching strategy utilizing the multi-community social context of users is proposed [3]. With a cooperative game method, they model collaborative effects between the set of UEs

However, there are few studies on leveraging user’s social community over both BS level and D2D level. Moreover, most of the related works have not considered mobile users’ cache capacity. To summarize, our contributions are summarized as follow:

- We consider both of the energy consumption of BS and D2D level. We assume that if requested contents are not stored in the nearby devices, the users will be transmitted the desired content from the MBS.
- The users in the same social community prefer similar short video contents such as YouTube music videos, so the content catalog for a community is defined already. We organize two different graphs: i) physical D2D graph having user nodes as vertices and D2D links as edges, and ii) logical social graph which is consist of a group of people who share the common interest.
- We formulate the content distribution scheme to all users in the same social community with the consideration of the distance and the social ties between users and cache capacity of mobile devices. We solve this problem by using Q-learning method aiming to minimize total energy consumption.
In this paper, we consider 5G networks with MBS and mobile devices. A detailed example is illustrated as Fig. 1. The content server is connected to MBS over backhaul link so that content can be transmitted from the content server to MBS. In the scope of this MBS, there are 5 users named by numbers. The MBS can transmit requested content to each user over a cellular link. If channel gain between two users is high enough, we assume that there is a D2D link between them. As described in the figure, let’s say that the 5 users share the common interest. Then, we can say that they are in the same social community. Moreover, we can construct a social graph with edge s of the social tie which can be frequency, intimacy/closeness, longevity, reciprocity, recency, multiple social contexts, and mutual confiding (trust) [10]. Also, the users in the graph cache several contents of the content catalog under the constraint of their cache capacity.

A. Graph Model

In this scenario, there are \(N \) number of users in the range of MBS \(\theta \). A set of mobile users is denoted by \(U_N \). Their location is represented by \(P_N = (x_N, y_N) \). Then, the D2D Graph \(G_D(U_N, E_D) \) can be constructed which is connected-graph where \(E_D \) is the edge of graph \(E_D = \{E_{m,n}|U_m, U_n \in U_k \text{ and } m \neq n\} \). It is weighted by the distance of two user devices over D2D communication \(r_D = \{r_{m,n}|U_m, U_n \in U_k \text{ and } m \neq n\} \).

We consider \(K \) number of social community and each of community constructs social graph \(G^k_S(U_k, E^k_S) \) which is connected-graph where the edge of a graph is weighted by a social tie between two different users in social community \(k \). We can denote a set of users in social community \(k \) as \(U_k \). Then, the edge of this graph \(E^k_S = \{E_{m,n}|U_m, U_n \in U_k \text{ and } m \neq n\} \) can be weighted by the social tie between user \(m \) and \(n \).

We assume that popular contents differ from each social community. Then we can define content catalog for social community \(k \) which can be denoted by \(N^k_F \). Also, we assume that all the contents have the same size \(C_k \). We assume that the MBS distribute several popular contents of each social community to all users who belong to the social community.

There are several assumptions on the proposed system model. We assume a static content catalog which is consist of \(N^f \) contents ordered by content popularity. For modeling content popularity, Zipf distribution is commonly used. When each mobile user requests a content, then the probability of requesting \(f^{th} \) popular content is denoted by [5]:

\[
p_f = \frac{f^{-\alpha}}{\sum_j j^{-\alpha}}
\]

Also, we assume that each mobile user equipment has the same limited cache capacity \(C \). When it comes to distance, the distance between one-hop neighbors should less than \(d \).

B. Energy Consumption Model

In the proposed environment, we assume overlay inband D2D communication that D2D users are allocated to dedicated spectrum resources [6]. As a result of dedicated resources, the problem of interference is much alleviated in overlay inband D2D communication. So we do not consider the interference on D2D communication. Also, we assume that BS manages the beaconing channel so that BS can support D2D users which makes more energy efficient. Similar with [7], we define the energy consumption of D2D communication. According to [8], the average data rate of D2D communication is denoted by:

\[
R_D = E \left(W_D \log_2 \left(1 + \frac{T_D h_D}{\sigma_D^2} \right) \right) \approx W_D \log_2 \left(1 + \frac{T_D h_D}{\sigma_D^2} \right)
\]

\(T_D \) is the mobile device transmission power. \(W_D \) is the channel bandwidth from \(D_i \) to \(D_j \). \(h_D \) denotes channel gain which follows zero mean complex Gaussian distribution with unit variance. \(r_D \) represents the distance between \(D_i \) and \(D_j \). \(\sigma_D^2 \) is white Gaussian noise and \(\delta \) is path loss factor. In [9], they modeled the power consumption of \(D_j \) as \(\rho_D T_D + C_D + H_D \), where \(C_D \) denotes the circuit power consumption of the mobile device, and \(\rho_D \) represents the inverse of power amplifier efficiency factor and \(H_D \) is the energy consumption of caching hardware devices. We do not take energy for delivery of the cached content into consideration. In case that \(D_j \) transmits \(L \) bits file to \(D_i \), the energy consumption of \(D_j \) is followed by:

\[
E_D = \frac{C_k}{R_D} (\rho_D T_D + C_D)
\]

Regarding energy cost for MBS, we can model the downlink speed of the mobile device is formulated as:

\[
R_B = E \left(W_B \log_2 \left(1 + \frac{T_B h_B}{\sigma_B^2} \right) \right) \approx W_B \log_2 \left(1 + \frac{T_B h_B}{\sigma_B^2} \right)
\]

In this formulation, \(T_B \) is the MBS transmission power. \(W_B \) denotes the downlink transmission bandwidth from
MBS to the mobile device, \(h_B \) represents the channel power gain which follows zero mean complex Gaussian distribution with unit variance. \(r_B \) is the distance between \(D_i \) and MBS. \(\sigma_B^2 \) is the variance of additive white Gaussian noise and \(\beta \) is the path loss factor. According to [9], when we do not consider the energy consumption for file storage in MBSs, in case that MBS send \(L \) bits file to \(D_i \), the energy consumption at the MBS is denoted by:

\[
E_B = \frac{C_s}{r_B} (\rho_B T_B + C_B)
\]

(5)

\(C_B \) represents an offset of site power including the baseband processor, the cooling system and etc, and \(\rho_B \) denotes the inverse of power amplifier efficiency factor.

Finally, the optimization problem of minimization of total energy consumption is represented by:

\[
\min (\Sigma E_D + \Sigma E_B)
\]

(6a)

s.t.

\[
\frac{\gamma D_{m,n}}{E^D_{m,n}} \leq d, \forall U_m, U_n \in U_N \quad (6b)
\]

\[
\lim_{\mathcal{F}_n \to \mathcal{F}_n} S_{m,n} \leq \theta, \forall U_m, U_n \in U_N \quad (6c)
\]

\[
0 < C_B |S_{m,n}| \leq C, \forall U_m, U_n \in U_N \quad (6d)
\]

III. Q-LEARNING BASED CONTENT DISTRIBUTION

To solve the content distribution to mobile user devices, we utilize Q-learning method [10] which yield great performance for getting the optimal policy corresponding to the given Markov Decision Processes (MDPs).

- **State:** In our problem, we consider a social community \(k \) to distribute several contents in content catalog \(N_{f}^k \) to all users in \(U_k \). Then, we can define a matrix \(S_{u_k \times N_f^k} \) which indicates the state of which content is stored at which user device. When user \(U_i \) stored content \(f_l \), the indicator can be denoted by \(\mathbb{1}_{u_i,f_l} = 1 \). Otherwise, the indicator has zero value \(\mathbb{1}_{u_i,f_l} = 0 \). The matrix \(S_{u_k \times N_f^k} \) stores this indicator information.

- **Action:** The action space is denoted by a matrix \(A_{u_k \times N_f^k} \) which indicates the exchange of contents. When the content \(f_l \) in user device \(U_i \) is exchanged with the content \(f_m \) in user device \(U_j \), then \(A_{u_i,f_l = -1, A_{u_j,f_m} = -1} \) and \(A_{u_i,f_m = 1, A_{u_j,f_l} = 1} \). In the case of no change, the value is zero. So the next state will be \(S_{u_k \times N_f^k}^{t+1} = S_{u_k \times N_f^k}^t + A_{u_k \times N_f^k}^t \). We assume that each user device can store \(C/f_C \) number of contents. So when the agent decides to get rid of specific content, then that content should be cached at a different user device.

- **Reward:** The reward is defined under two cases. When the desired content is cached in the local storage, then the reward is a max social tie because we can assume that every user has the maximum social tie with itself intuitively (\(R = max_{social_tie} \)). However, in case that the requested content is stored at the one-hop neighbor, then the reward is represented by \(R = (Social_tie) – (distance) \). The total reward is the summation of all reward to service requested contents to all users.

In our problem, the purpose is finding the optimal policy for the distribution of all contents to users. Basically, Q-learning experiences the cases through episodes and updates its estimates which resemble Bellman equations. This updates can be denoted by:

\[
Q(s,a) \leftarrow (1 - \lambda)Q(s,a) + \lambda [r + \gamma \max_{a'} Q(s',a')] \quad (7)
\]

In this equation, \(Q(s,a) \) denotes Q-value when agent acts \(a \) in the state \(s \). When the Q-value is high, it means doing \(a \) when the state \(s \) is highly preferable. \(\gamma \) is the discount factor indicating the value decrease over time and \(0 < \gamma < 1 \). \(\lambda \) means learning rate so when it is high, the agent reflects the most recent Q-value greatly in order to update Q-value. In short, the Q-value is updated with the summation of the current reward value and the largest Q-value among the actions that can be taken thereafter with discount factor \(\gamma \). The Q-learning agent explores the environment for a new experience at a rate of \(\epsilon \).

The overall procedure of Q-learning based caching scheme is given by Algorithm 1. We input D2D graph \(G_D \) and social graph \(G_S \) to output the optimal policy \(\pi^{*} \). After initializing the environment and setting the base station, we define the state space and the action space in (line 3). For each iteration, the agent chooses random action with the probability of \(\epsilon \) to explore the environment (line 5 - line 6). Otherwise, the agent selects the action which has the largest Q value for the current state (line 8 - line 9). With new state and calculated reward, the agent update Q table (line 10 – line 14).

Algorithm 1 Q-learning based Socially Aware Caching Model

Input: \(G_D, G_S \)

Output: Optimal caching distribution policy \(\pi^{*} \)

1. Initialize environment parameters: \(\delta, C_B, T_{N_f^k \times T} \)
2. Set base station with \(P_B^{\eta}, W_B, \sigma_B^2, \alpha \)
3. Define \(S_{u_k \times N_f^k}, A_{N_f^k \times N_f^k} \)
4. for episode in range(\(n_{episode} \)) do
5. if rand(0,1) > \(\epsilon \) then \(\triangleright \) Exploration
6. action \(\leftarrow \) rand_choice\((A_{N_f^k \times N_f^k}) \)
7. else \(\triangleright \) Exploitation
8. get Q-table[state]
9. action \(\leftarrow \) argmax(Q-table[state])
10. update new_state, reward
11. \(Q_1 \leftarrow \) Q-table[state][action]
12. \(Q_2 \leftarrow \) reward + \(\gamma \) * max(Q-table[next_state])
13. add \(l * (Q_2 - Q_1) \) to Q-table[state][action]
14. state \(\leftarrow \) next_state
15. if done then
16. Break
In this paper, we studied the influence of socially aware caching on MBS and mobile user devices and proposed the scheme of Q-learning based content distribution to users in the same social community under the constraint of each users’ cache capacity. The proposed solution aims to maximize the energy efficiency over MBS and mobile devices, and we achieved high performance in terms of the cache hit ratio and energy consumption. For future work, we can extend the proposed solution on the multi-social community aware environment and analyze the latency of the proposed algorithm.

ACKNOWLEDGMENT
This work was partially supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-01287, Evolvable Deep Learning Model Generation Platform for Edge Computing), and by IITP grant funded by the Korea government (MSIT) (No.2015-0-00567, Development of Access Technology Agnostic Next-Generation Networking Technology for Wired-Wireless Converged Networks) *Dr. CS Hong is the corresponding author.

REFERENCES