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ABSTRACT
Demand response of datacenters recently has received in-
creasing efforts due to huge demands and flexible power
control knobs. However, very few works focus on a criti-
cal segment of datacenter business: multi-tenant colocation.
In colocation datacenters, while there exist multiple tenants
who manage their own servers, the colocation operator only
provides other facilities such as cooling, reliable power, and
network connectivity. Therefore, colocation has a unique
challenge for the demand response: uncoordinated power
management among tenants. To tackle this challenge, we
study how to coordinate tenants for economic demand re-
sponse. We show that there is an interaction between the
operator and tenants’ strategies, where each side maximizes
its own benefit. Hence, we apply a two-stage Stackelberg
game to analyze this scenario and derive this game’s equi-
libria. Finally, trace-based simulations are also provided to
illustrate the efficacy of our proposed incentive schemes.

1. INTRODUCTION
Datacenters have been consuming billions of kilowatt-hour

energy each year to support the explosive cloud services.
While their huge energy demands have certainly raised con-
cerns with environmental impacts and operating costs, data-
center’s operation is highly-automated (through, e.g., work-
load and resource management), leading to a great flexibility
in energy demand which has been increasingly recognized as
a valuable demand response resource that helps to balance
grid’s power supply and demand. Recent studies have shown
that a 20 MW datacenter can be worth up to 5 million dol-
lars of energy storage for power grid, and the whole data-
center demand response market in the U.S. can be billions
of dollars [7].

While the existing research focuses on Google-type data
centers [5–7,10], we consider colocation datacenters (colos),
which consume nearly 40% of all data center energy [8].
There are many reasons to advocate more research efforts on
colos. First, colos’ customers diversely include many popu-
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lar Internet websites (such as Twitter and Wikipedia) and
various cloud-computing services (such as Salesforce and
Box) [9]. Second, the growth of colos continues increas-
ing sharply: currently there are more than 1200 colos in the
U.S. alone [3], and the colos market is expected to grow from
current $25 billions to $43 billion in the next five years [1].
Finally, colos are ideal contributors to the demand response
programs: (i) colos also have extreme power demands, e.g.
colos’ demands in New York exceeds 400MW [3]; (ii) colos
are often located in urban areas, e.g. Los Angeles.

Instead of fully controlling all facilities, a colo is a shared
multi-tenant datacenter where multiple tenants house and
fully control their servers while the colo’s operator is mainly
responsible for facility support such as power, cooling, and
network access. Thus, there exists a split-incentive hin-
drance for colos’ demand response: the operator may need
reducing energy usage upon the request of LSE in order to
receive financial reimbursement, while tenants have little in-
tention to reduce power demand because tenants’ billings are
based mainly on peak-power subscription with fixed rates,
which is independent of their actual usage [2]. The first
study that attempts to break the split-incentive issue of colos
is [9], though its mechanism is simple and relies on the ten-
ants’ best-effort, which can unfulfill reduction targets as well
as truthfulness of strategic tenants. A recent work [11] has
overcome these issues with a randomized auction mechanism
that can guarantee a 2-approximation in social welfare cost.
However, both [9] and [11] are based on reverse auction,
in which tenants must voluntarily submit bids. Since ten-
ants are naturally not concerned in load reduction, treating
tenant biddings as voluntary tasks can lead to pessimistic
results on the number of participants.

In this work, we study how to coordinate tenants to per-
form economic demand response. In our proposal, the opera-
tor will reward tenants with monetary incentives to perform
demand response to a level that can maximize the operator’s
profit, which can be the financial compensation from LSE
or achieving green certificates. Consequently, upon receiving
the announced reward from operator, self-optimized tenants
will maximize their net utility individually. We model this
mechanism as a Stackelberg game and analyze its equilib-
ria. We also propose an algorithm to obtain the optimal
solution of the operator’s mixed-boolean nonlinear prob-
lems. Our key contributions are not only reflected in the
efficient performance guarantee but also validated by trace-
based simulations. A wide range of numerical case studies
demonstrate that our linear-complexity scheme can achieve
the same performance as the exhaustive search method for



the mixed-boolean programming problem.

2. SYSTEM MODEL
We consider a colo-datacenter in which a set of I = {1, . . . , I}

tenants house their servers. Tenant i has Mi homogeneous
servers. A tenant with heterogeneous servers can be viewed
as multiple virtual tenants, each having homogeneous servers.
We consider a one-period demand response, as in [6, 9],
where its duration T is controlled by an LSE, e.g. 15 min-
utes or 1 hour. During a period, the workload arrival rate
to tenant i is denoted by λi.

If tenant i has no intention to participate in demand re-
sponse, all of its servers are active and the workload will
be distributed to all servers evenly to optimize performance
[5]; hence, the energy consumption of this case is ei =

Mi(pi,s + pi,d
λi

Miµi
)T [9], where pi,s and pi,a are the static

and active powers of each server, respectively, µi is a server’s
service rate measured in terms of the amount of workloads
processed per unit time, and λi

Miµi
is the server utilization

with Mi active servers. In contrast, when doing demand re-
sponse by turning off mi servers, the energy consumption of
tenant i is e′i = (Mi −mi)

(
pi,s + pi,d

λi
(Mi−mi)µi

)
T . There-

fore, IT-only (e.g., not including cooling) energy reduction
by tenant i is

∆ei = ei − e′i = mi
pi,s · T
PUE

, (1)

where PUE is the power usage effectiveness measuring the
energy efficiency of the colo. In the sequel, we assume
pi,s·T
PUE

= 1 without loss of generality (w.l.o.g.); hence, we
will use ∆ei and mi interchangeably.

Turning servers off can more or less have negative effects
to tenants’ performance, inducing tenants’ costs. We rely on
two typical costs that are widely used for tenants: the wear-
and-tear cost and Service Level Agreement (SLA) cost [5,9].

Wear-and-tear cost: This cost, which occurs when ten-
ants switch/toggle servers between active and idle states in
every period, can be modeled as ωi,1 · mi, where ωi,1 is a
monetary weight (i.e., $/server.)

SLA cost: Since many Internet services hosted in data-
centers are sensitive with response/delay time, the SLA cost
can be viewed proportionally to tenants’ average response
time. By using the M/M/1 queue model, the average re-
sponse time of each tenant i’s workload is 1

µi−
λi

Mi−mi

. The

total SLA cost of a tenant can be modeled as ωi,2 · di(mi)

where di(mi) = λi

µi−
λi

Mi−mi

, and ωi,2 is a monetary weight

(i.e., $/delay.)
Therefore, tenant i’s total cost when turning mi servers

off is

Ci(mi) = ωi,1 ·mi + ωi,2 · di(mi). (2)

3. INCENTIVE MECHANISM FOR COLOS’
ECONOMIC DEMAND RESPONSES

In this section, we first introduce the economic demand
response of colos. We then study this scenario using the
Stackelberg game.

3.1 Economic Demand Response: a Two-stage
Stackelberg Game Approach

Economic demand response programs generally indicate
how customers can actively respond to price signals [4]. For
example, during peak times with high wholesale prices, the
customers (i.e. colos), who receive signaling from the LSE,
can reduce their consumption to receive some economic ben-
efits corresponding to the amount of energy reduction. Since
the reduction volume is not necessarily fixed, many cus-
tomers find this program appealing due to its flexibility.

In this scenario, even though a colo can freely determine a
desired reduction volume, its operator cannot directly con-
trol the tenants’ servers to proceed the demand response.
Therefore, the operator’s purpose is to incentivize tenants to
reduce their energy up to a level that can maximize the oper-
ator’s benefit. Consequently, upon receiving the announced
reward from the operator, rational tenants will maximize
their own profits individually. Observing this hierarchical
structure between the operator and tenants, we tackle this
economic demand response for colos by using a Stackelberg
game approach. The strategies of players in each stage of
this game will be presented sequentially.

Tenants (Stage II). Since the operator is the leader that
has a first-move advantage, it will first announce a reward
rate r (e.g., $/kWh) that it is willing to pay tenants for
turning off their servers. Given r, at Stage II, each rational
tenant i’s strategy is to choose a number of turned-off servers
mi that will maximize its net utility as follows

maximize
mi

ui(mi, r) = rmi − Ci(mi) (3)

s.t. mi ≥ 0. (4)

Since the number of servers can be very large, e.g. thou-
sands, we can relax mi as a continuous variable [6]. We
have

C
′′
i (mi) =

2λ2
iµiωi,2(

(Mi −mi)µi − λi
)3 , (5)

which means Ci(mi) is a strictly convex function when ten-

ant i’s workload is less than its service rate, i.e., C
′′
i (mi) > 0

when λi
Mi−mi

< µi. We further relax the feasible constraint

0 ≤ mi ≤ Mi to (4), which has no effect to problem (3)
since its feasible solutions are always strictly less than Mi

(i.e., Ci(m
′
i) =∞, m′i ≥Mi). Then, since ui(mi) is strictly

concave, there exist a unique solution m∗i (r), ∀i, for a given
r in Stage II.

Operator (Stage I). Knowing that each tenant i’s strat-
egy will be m∗i (r), the operator’s strategy is to choose the
optimal r? of the following profit maximization problem

max.
r≥0

U(r, {m∗i }) = U
(∑

i∈I
m∗i (r)

)
− r

∑
i∈I

m∗i (r),

(6)

where U(·) is the colo-datacenter’s utility, which can repre-
sent a financial compensation from LSE or a green certificate
achieved with respect to its energy reduction, balanced with
the cost spent for incentiving tenants r

∑
i∈Im

∗
i (r). Even

though we have no assumption on a specific utility function
for our proposal, some typical candidates are provided for
case studies in Section 4.

Stackelberg Equilibrium. Denote a solution of the op-
erator’s profit maximization by r?, we have the following
definition

Definition 1. (r?, {m?
i }) is a Stackelberg equilibrium if

it satisfies the following conditions for any values of r and



{mi}

U(r?, {m?
i }) ≥ U(r, {m?

i }), (7)

ui(m
?
i , r

?) ≥ ui(mi, r
?), ∀i. (8)

Next, we use the backward-induction method to analyze
the Stackelberg equilibria.

3.2 Stackelberg Equilibrium: Analysis and Al-
gorithm

By first-order condition ∂ui
∂mi

= r − C′i(mi) = 0, we have

the unique solution m∗i of tenant i for a given r as follows

m∗i (r) = [fi(r)]
+ :=

[
Mi − ρi

(
1 +

√
ωi,2

r − ωi,1

)]+
, ∀i,

(9)

where [x]+ = max{x, 0}, and ρi := λi
µi

.

Then, by substituting (9) into (6), the operator’s problem
is formulated as follows

maximize
r

U
(∑

i∈I
[fi(r)]

+
)
− r

∑
i∈I

[fi(r)]
+ (10)

s.t. r ≥ 0.

We see that due to the operator [.]+, problem (10) is non-
convex. Specifically, if we define a new variable

zi =

{
1, r > κi;

0, otherwise,
(11)

where

κi := ωi,1 +
ωi,2ρ

2
i

(Mi − ρi)2
, (12)

then we see that m∗i (r) > 0 when zi = 1 and m∗i (r) = 0
when zi = 0. Therefore, problem (10) is equivalent to

maximize
r,{zi}i∈I

U
(∑

i∈I
zi · fi(r)

)
− r

∑
i∈I

zi · fi(r) (13)

s.t. r ≥ 0,

zi ∈ {0, 1},∀i.

We see that problem (13) is a mixed-boolean programming,
which we may acquire an exponential-complexity effort (i.e.
2I configurations of {zi}i∈I) to solve by the exhaustive search.
However, by unveiling its special structure, we propose an
algorithm, namely Algorithm 1, that can find the solutions
of problem (13) with linear complexity as follows.

Proposition 1. Algorithm 1 can solve the Stage-I’s equiv-
alent problem (13) with linear complexity.

Proof. Since the tenants are sorted according to increas-
ing κi (line 1), when the sufficient condition r > κi satisfies,
we have zj = 1, ∀j ≤ i. In this case, the operator’s problem
(13) becomes (14), which is a single-variable and continuous
problem and can be solved efficiently using any numerical
methods (e.g., bisection, Newton, etc.) (lines 1-4). There-
fore, we assume that (14) is available first, then find its
solutions and only keep those satisfying the sufficient condi-
tion (line 5). By successively solving (14) and checking the
sufficient condition (lines 5-8), we cover all possible cases of
the equivalence between problem (13) and (14). Finally, we
just compare and pick solutions that result in the highest
operator’s profit (line 10). Clearly, with a single loop, Algo-
rithm 1 has the complexity O(cI), where c is the complexity
to solve problem (14).

Algorithm 1 Operator’s Revenue Maximizer

1: Sort tenants according to κ1 < κ2 < . . . < κI .
2: A = {}, B = I, j = I;
3: while j > 0 do
4: Find the solutions rj of the following problem

max.
r≥κ1

U
(∑

i∈B
fi(r)

)
− r

∑
i∈B

fi(r) (14)

5: if rj > κj then A = A ∪ {rj};
6: end if
7: B = B \ j;
8: j = j − 1;
9: end while

10: Return rj ∈ A with highest optimal values of (14).
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Figure 1: Comparison of three schemes in economic demand
response with utility U is a log function: a) Reward rates,
b) Operator’s profit.
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Figure 2: Comparison of three schemes in economic demand
response with utility U is a linear function: a) Reward rates,
b) Operator’s profit.

Denoting the Algorithm 1’ outputs r? (which can be mul-
tiple values) and m?

i = m∗i (r
?), we have the straightforward

result, whose proof is omitted due to limited space.

Theorem 1. The Stackelberg equilibria of colos’ economic
demand response are the set of pairs (r?, {m?

i }).

Based on these equilibria analysis, we next examine how to
implement the Stackelberg game-based mechanism.

3.3 Implementation Operations
The main operation of colos’ economic demand response

can be implemented in the following order. First, each self-
optimized tenant submits its best response (9) to the oper-
ator. Then, after collecting all of these best responses, the
operator solves its profit maximization (6) using Algorithm
1 to achieve r? and broadcast this r? to all tenants. Finally,
based on this r?, each tenant will correspondingly turn m?

i

servers off.

4. SIMULATION RESUTLS
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Figure 3: Comparison of three schemes in economic demand
response vs. monetary weight ω3: a) Reward rates, b) Op-
erator’s profit.

We consider a colo-datacenter with varying number of ten-
ants for performance evaluation, and each tenant i has a
number of maximum servers Mi that varies uniformly from
3,000 to 10,000 representing for heterogeneous tenant’s busi-
ness. The wear-and-tear and delay cost weights, ωi,1 and
ωi,2, respectively, also are uniformly distributed on [0.1, 3],
which captures a wide range of tenants’ cost sensitivity. We
uses two basic traces “MSR” and “FIU” [10] to generate
synthetic workloads for tenants. Each tenant’s workload is
normalized with respect to its service rate µi, which is set
to 1000 jobs/s.

We compare the performance of Algorithm 1 (Alg. 1) with
two baselines. The first baseline, named OPT, is the opti-
mal solutions of problem (10) using exhaustive search. The
second baseline, called RAND, is a random price νrand uni-
formly distributed in [mini{C′i(0)},maxi{C′i(0)}] to enable
feasible solutions, which represents a simple but inefficient
schemes. When U = ω3 log

(
1 +

∑
i∈I m

∗
i (r)

)
, where ω3 is

uniformly distributed on [0.2, 50] and log term reflects the
diminishing return on the amount of reduced load, we show
the values of the reward rates of different schemes and the
corresponding operator’s profit in Figs. 1a and 1b, respec-
tively. When U = ω4

(∑
i∈I m

∗
i (r)

)
+ ω5, where ω4 and

ω5 are uniformly distributed on [1, 2] and [5, 10], respec-
tively, we show the operator’s reward rate and profit of three
schemes in Figs. 2a and 2b, respectively. Since the operator
can have a wide range of possible utility values depending
on many factors such as LSE’s reimbursement, peak or non-
peak demand response period, and colo’s characteristics, we
have the freedom to choose the weight parameters such that
feasible solutions exist. In all scenarios, we see that while
Alg. 1 and OPT achieve the same performance in all figures,
the scheme RAND is not as efficient as the others.

We also examine the effect of ω3 in Fig. 3. We can see
that ω3 has an impact to the operator’s profit. Specifically,
the optimal operator’s profit increases linearly when ω3 in-
creases, while the optimal reward rates are unchanged.

5. CONCLUSIONS
In this paper, we addressed the demand response of cru-

cial but less-studied segment of datacenter market: coloca-
tion datacenters (colos). We tackled the split-incentive hin-
drance between colo’s tenants and operator in the context
of economic demand response, which is based on top of the
two-stage Stackelberg game. Then the operator is the leader
who can set its incentive reward rate, and the tenants are
the followers who decides how much energy to reduce given
the operator’s reward. We first analyzed this hierarchical
game structure using the backward induction method and

then proposed a linear time complexity to find its equilibria.
Finally, the trace-based simulation results validated efficacy
of our proposed scheme.
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