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Abstract—Efficient and fair power allocation associated with
congestion control in orthogonal frequency division multiplexing
(OFDM)-based multi-hop cognitive radio networks (CRNs) is a
challenging and complicated problem. In this paper, we consider
their mutual relationship through a cross-layer optimization
design that addresses both aggregate utility maximization and
energy consumption minimization. By introducing the unique
outage constraint of primary user (PU) protection, the joint
congestion control and power control (JCPC) formulation is
shown to be a nonlinear non-convex optimization problem. Using
dual decomposition approach, we first propose a distributed
algorithm that can attain the optimal solution via message
passing while maintaining the architectural modularity between
the layers. Next, we develop a suboptimal algorithm using
a new heuristic method to alleviate the overhead burden of
the first solution. Finally, the numerical results confirm that
the OFDM-based multi-hop CRNs can optimally exploit the
spectrum opportunity if the PU outage probability is kept below
the target.

Index Terms—Cross-layer optimization, congestion control,
power control, outage probability, message passing, CRNs.

I. INTRODUCTION

COGNITIVE Radio, a new communication paradigm for
more efficient utilization of radio spectrum, has been

attracting substantial attention from the wireless communica-
tion community. In fact, CRNs are based on the principles of
spectrum sensing and dynamic spectrum access. However, as
recently proposed by many researchers, the secondary users
(SUs) may simultaneously perform their transmission over
the licensed bands providing that the harmful interference
introduced by them to the PU receiver (Rx) is below an
acceptable threshold, known as spectrum underlay [1]. In a
spectrum underlay environment, one of major challenges of
a multi-hop CRN with the interference-limited link capacities
are how to optimally resolve the mutual relationship between
congestion control and power control in order to improve
the overall network utility while guaranteeing the protection
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of the PUs from the excessive interference introduced by
the SUs. More importantly, the network control algorithm
design must maintain its modular layer architecture. However,
harmful interference and congestion due to the concurrent use
of common-use radio bands and links become obstacles to
overcoming those challenges. As a consequence, the overall
performance of a multi-hop CRN calls for a cross-layer design
and an optimization approach. The major motivation of this
paper is the provision of high total utility for the SUs and the
preservation of architectural modularity of Internet Protocol
(IP) via a cross-layer methodology without degrading the
performance of the PUs.

The basic idea behind spectrum pooling [2] is merging
dynamic spectral ranges from different spectrum owners into
a common pool for secondary use during PU’s under-utilized
and/or idle periods. OFDM has already received tremendous
recognition as a promising candidate for the SUs’ transmission
in cognitive radio systems, mainly due to its robustness
against multipath fading and subcarrier structure allowing the
adaption of transmission parameters. In OFDM-based CRNs,
the unused subcarriers left by the PUs can be exploited by the
SUs in an interweave fashion [2]–[5]. However, the SUs can
adapt their transmission parameters into any subcarriers in an
underlay fashion if the aggregate interference inflicted on the
PU receivers remains below the acceptable threshold [6]–[11].

Resource allocation in OFDM-based CRNs has been exten-
sively studied. Most studies [3]–[5], [7] consider maximizing
the SUs’ throughput with an adjacent channel interference
(ACI) constraint to the PUs due to their coexistence in side-
by-side bands. However, our scope focuses on the second
approach [8], in which both ACI constraint and common chan-
nel interference (CCI) constraint due to coexistence of both
PUs and SUs in the same band are taken into consideration.
Some recent works ( [3], [9]–[11]) addressed the problem
of total capacity optimization under OFDM-based CRNs and
proposed different ways to protect the PUs. In [9], Chen
et al. investigated the joint subcarrier and power allocation
for uplink OFDM-based CRNs with a peak power constraint
in order to protect the PUs. By introducing an interference
temperature constraint for guaranteeing PUs’ quality of service
(QoS), the authors [6] proposed an optimal subcarrier and
power allocation algorithm to maximize the overall utility
for SUs. For situations in which the PU’s channel state
information (CSI) is unavailable at the SU’s transmitter, a
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hybrid of the new rate loss constraint and the conventional
interference power constraint was proposed for primary trans-
mission protection [11]. Through an optimal power allocation
strategy, Kang et al. in [11] showed that a significant rate
gain under the hybrid protection constraint can be achieved as
compared to that obtained under the conventional interference
power constraint.

It is implicitly understood that most constraints of in-
terference temperature, interference power, or rate loss are
linked directly with a channel’s deterministic state (i.e., both
slow-fading and fast-fading channel gains are fixed). Hence,
for each secondary-to-primary channel state, power allocation
algorithms must be performed twice in order to seek a new
optimal solution satisfying these constraints. This makes the
message passing-based distributed algorithms infeasible and
unscalable with fast-fading. In [10], Son et al. addressed this
problem by proposing the optimal and suboptimal algorithms
to maximize the capacity of a single pair of SUs in a
simple OFDM-based cognitive system under the interference-
power outage constraint to protect the PUs. However, even
in the absence of the SUs, the PUs’s transmission may be
failed by severe fading channels. To cope with this effect,
the outage probability which is defined as the fraction of
time a transmitter/receiver pair experiences an outage over
fading blocks [12] and [13], is introduced in this paper as
the target constraint to protect the PU’s transmission using
spectrum underlay approach. As a result, it is not necessary
to update the optimum whenever the primary-related fading
channels change their states. In particular, in this work, we
present a cross-layer optimization framework for multi-hop
CRNs by investigating the joint congestion and power control
problem via Network Utility Maximization (NUM) [14]. Our
contributions are summarized as follows:

• A cross-layer framework is developed to address both
congestion control and power control in OFDM-based
multi-hop CRNs as a nonlinear non-convex optimization
problem. Unlike previous works, the use of outage con-
straint to protect the PUs allows the SUs to adaptively
adjust their transmission parameters (i.e., transmit power,
spreading gain, and transmission rate) without depending
on the dynamic fading channel of the PU-related links.

• We propose two distributed algorithms for the problem
of JCPC to maximize the SUs’ net revenue. The first
algorithm can obtain the global optimum with message
passing while the second solution is sub-optimal without
explicit message passing.

• In order to maintain the architectural modularity be-
tween layers, we show that our proposed algorithms can
couple with the congestion control mechanism of the
existing transmission control protocol (TCP) to obtain the
spectrum utilization and increase the secondary system’s
aggregate throughput.

It is important to emphasize that the adaptation of dual
decomposition methodology having been used in [15] and in
the vast, existing literature to disjoint the global dependence
of primal variables for our NUM-based optimization problem
of JCPC is not a trivial application due to essentially different
scenarios of CRNs in terms of dynamic spectrum, multi-

carriers, spectrum incumbent protection, and network model.
In addition, the unique outage constraint of PU protection in
this paper makes our optimization problem very challenging
and therefore demands new solutions.

The rest of paper is organized as follows. Section II presents
the system model and problem formulation. Section III in-
troduces the optimally distributed JCPC algorithm based on
the primal-dual method. In Section IV, we present a new
heuristic method to develop a sub-optimal JCPC algorithm in
order to obtain scalability as well as preservation of the TCP’s
congestion mechanism with no explicit message passing. We
present numerical results to illustrate the performance of our
proposed algorithms in Section V, and finally conclude the
paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-hop CRN in which the combination
of code division multiple access (CDMA) and multicarrier
transmission technology OFDM, so-called MC-CDMA [16],
is adopted at the physical layer over each hop, such that
multiple secondary transmissions can concurrently occur in
a common frequency band. The entire spectrum that can
potentially be used by SUs is divided into M narrow-band
flat-fading subcarriers, and each has a bandwidth of Wm.
These subcarriers are grouped into K subchannels that are
correspondingly licensed to K primary links (not necessarily
OFDM) as shown in Fig.1. Note that we also use mk to denote
the index of the first subcarrier in the kth subchannel. All SUs,
equipped with cognitive radios, can perform simultaneous two-
way information transfer over a common wide-band channel
known as division free duplex (DFD) [17]. A set of links
L = {1, ..., L} logically formed among SUs are shared
by a set of sources S = {1, ..., S}. Suppose that source
s ∈ S traverses multiple hops on its path to reach the target
destination through the pre-established set of links, L(s) ⊆ L.
We also assume that the SUs’ buffers are infinite and sources
always have data to send such that delay constraints are
ignored. In addition, the source s regulates its transmission
rates in response to congestion levels within the network. This
is typically done by using a utility Us(xs) : R+ → R, which
can be interpreted as the level of satisfaction attained by a
source at the allocated rate xs ∈ [xmin

s , xmax
s ]. This utility

function is assumed to be twice continuously differentiable,
non-decreasing, and strictly concave.

A. Multiuser Frequency-Selective Fading Model and Link
Capacity Constraint

We consider additive Gaussian noise with power ηl as
background noise at the receiver of each link l. The instanta-
neous signal-to-interference ratio (SIR), γm

l (Pm), at link l on
subcarrier m is expressed as

γm
l (Pm) =

Sm
ll P

m
l

ηl +
∑

h �=l S
m
lhP

m
h + Iml0

, (1)

where Pm = [Pm
1 , ..., Pm

L ] is a vector of secondary link
powers on subcarrier m and Iml0 =

∑K
k=1 I

m
lk is the to-

tal interference introduced by PU-transmitters into the mth
subcarrier on link l. We use the special index of l = 0 to
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TABLE I
IMPORTANT NOTATION

Symbol Definition
L Number of seconday links
L Set of secondary links, L =| L |
K Number of subchannels or primary links
K Set of primary links, K =| K |
M Number of subcarriers
M Set of subcarriers, M =| M |
Wm Subcarrier bandwidth
mk Index of the first subcarrier in the kth subchannel
S Number of data sources
S Set of data sources , S =| S |
L(s) Set of links on the path of source s
S(l) Set of sources using link l
xs Transmssion rate of source s
Pm
l Power of link l on subcarrier m

γm
l SIR at SU-Rx of link l on subcarrier m

γk
0 SIR at the kth PU-Rx

βm,k
l Interference factor of link l to PU-Rx k on subcarrier m

ζkth The kth PU-Rx’s outage probability threshold
γk
th The kth PU-Rx’s SIR threshold

γk
0 The kth PU-Rx’s outage probability in SUs’ absence

CPP Cost Per unit of Consumed Power

denote the primary link. We assume that the interference Imlk ,
introduced by the kth PU into the mth subcarrier on link l,
can be modeled as white noise, which can be estimated by
integrating the power spectral density (PSD) of the PU signal
across the mth subcarrier [3]. Sm

lk = Gm
lkF

m
lk , where Gm

lk and
Fm
lk represent the large-scale channel gain and random small-

scale channel fading gain between the kth link’s transmitter
and the lth link’s receiver on subcarrier m, respectively. In this
paper, we assume that Gm

lk only depends on the physical link
distance dlk with the path loss exponent n, i.e., Gm

lk = d−n
lk .

All channel fading gains Fm
lk are assumed to be independent

and identically distributed (i.i.d) random variables (RVs). We
further assume that Fm

lk is not dependent on all statistical
variations of both signal and noise power in each power
adaption interval. Hence, it remains constant during the power
adaption interval but may vary over the time scale of interest.

The instantaneous capacity of link l modeled on the Shan-
non capacity is a global and nonlinear function of the transmit
power vector P = (Pm,m ∈ M).

Cl(P) = Wm

M∑
m

ln (1 +GMCγ
m
l (Pm)). (2)

Here, constant GMC = −φ1/ log(φ2 BER) denotes the pro-
cessing gain, where φ1 and φ2 are constants depending on the
modulation method, coding scheme, and bit-error rate (BER)
[18]. In the MC-CDMA systems, it is assumed that GMC

and the number of subcarriers M are equal [16]. In this case,
GMCγ

m
l (Pm) is much greater than one. Therefore, the link

capacity can be approximated as
∑M

m ln (γm
l (Pm)), where

henceforth GMC is absorbed into Gll and Wm is assumed
to be unit without loss of generality. At link l, the ingress rate
should not exceed its link capacity, i.e.,∑

s∈S(l)

xs ≤ Cl(P), ∀l, (3)

where S(l) = {s : l ∈ L(s)} is the set of sources using link
l.

B. PU Outage Constraint

We assume that the radio transmission environment between
SU-transmitter (Tx) and the PU-Rx is non-line-of-sight. In
this case, we can employ a Rayleigh fading channel model,
where the small-scale channel fading gains Fmk

0l among the
SU transmitters and the PU receivers follow an independent
exponential distribution with unit mean. We further assume
that the PSD of the mth subcarrier on link l can be modeled
as an ideal Nyquist pulse [3]:

φm
l (f) = Pm

l Tm

(
sinπfTm

πfTm

)2

, (4)

where Tm = 1/Wm is the OFDM symbol duration. Let dkm
represents the spectral distance between the mth subcarrier
and the center frequency of PU k. The interference power,
introduced by the mth subcarrier of link l to PU-Rx on the
kth subchannel, is given by

Jm,k
l (dkm, Pm

l ) = Pm
l βm,k

l , (5)

where βm,k
l = Tm

∫ dk
m+Wk/2

dk
m−Wk/2

(
sinπfTm

πfTm

)2
df denotes the

interference factor of the mth subcarrier.
Let ηk0 be the thermal noise power at the kth PU-Rx, the

instantaneous SIR at the kth PU-Rx is expressed as

γk
0 (P

k) =
Gk

00F
k
00P

k
0

ηk0 +
∑L

l=1

∑mk+1−1
m=mk

Gm
0lF

m
0l J

m,k
l

, ∀k ∈ K, (6)

where Pk = [P i
l ], ∀i ∈ [mk,mk+1 − 1], ∀l ∈ L is the power

vector of all links over those subcarriers that are inside the
kth subchannel. We also note that the large-scale fading gains
Gm

0l , ∀m ∈ [mk,mk+1−1] on the same link l to the PU-Rx are
the same. However, the small-scale fading gains Fm

0l , ∀m ∈
[mk,mk+1 − 1] on the same link l may be different.

As can be observed from (6), the random variable γk
0 (P

k)
has a complex distribution, i.e, we can not employ its ap-
proximation with using either a Rayleigh distribution or any
other common distribution. Even in the absence of SUs, a
fast Rayleigh fading may also make PU-Rx unable to decode
the receiving signal from its PU-Tx’s transmission. In such
a case, the outage probability of PU should be taken into
account in order to accurately evaluate the PU’s QoS. To allow
the SUs’ channel access while maintaining its QoS, the kth
PU-Rx requires its outage probability to stay below a certain
threshold ζkth. The constraint is set as follows:

Pr[γk
0 (P

k) ≤ γk
th] ≤ ζkth, ∀k ∈ K, (7)

where γk
th is the SIR threshold at the kth PU-Rx. In other

words, the outage probability at PU-Rx k for a given SU
transmit power vector Pk is [13]:

Pr[γk
0 (P

k) ≤ γk
th] =

1− (1− ζk0 )

L∏
l=1

⎛
⎝mk+1−1∏

m=mk

(
1 +

Gm
0lP

m
l βm,k

l γk
th

Gk
00P

k
0

)−1
⎞
⎠ , ∀k,

(8)

where ζk0 = 1 − exp(
−ηk

0 γ
k
th

Pk
0 Gk

00
) is the outage probability of

the kth PU-Rx in the absence of SUs. Substituting (8) into
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(7), rewriting the resulting inequality as a lower bound on a
posynomial function with respect to Pk, then taking the natural
logarithm on both sides, we have

L∑
l=1

mk+1−1∑
m=mk

ln(1 + ρm,k
l βm,k

l Pm
l ) ≤ lnμk, ∀k ∈ K, (9)

where μk = (1 − ζk0 )/(1 − ζkth) and ρm,k
l =

Gm
0lγ

k
th

Gk
00P

k
0

. We
assume that the primary requirements including the transmit
power P k

0 , ζk0 , and ζkth must be declared a priori to all SUs.

C. Problem Formulation: JCPC with PU Outage Constraint

As mentioned in Section I, it is noteworthy that the hard
interference constraint may be inappropriate for PUs’ QoS
adaptation due to the fast-fading channel under distributed
spectrum underlay systems. For instance, when the fading
speed is dramatically increased, the rate of power update
for SUs must also increase in order to keep the harmful
interference to PU receivers below a certain threshold. This
produces either so much message passing overhead leading
to a collapse or a shortage of control information making
the message passing based distributed algorithms impossible
to converge. In order to cope with those difficulties while
maximizing the net revenue for secondary system, we propose
the following optimization framework in which the PUs are
supposed to suffer their certain outage probabilities so that the
SUs’ resource allocation is adapted on a much slower time
scale than the fluctuation of fading.

(P1) max
x∈X ,P∈P

∑
s∈S

Us(xs)− CPP
∑
l∈L

∑
m∈M

Pm
l (10)

subject to (3) and (7),

where X = {xs; s ∈ S|xmin
s ≤ xs ≤ xmax

s } and P =
{Pm

l ; l ∈ L,m ∈ M|Pmin
l ≤ Pm

l ≤ Pmax
l } indicate QoS

constraints for each source and the power restrictions for
each link, respectively. CPP is the cost per unit of consumed
power. Hereafter, we assume CPP to be unit without loss of
optimality.

As can clearly be observed from (2), the capacity of each
link is a nonlinear and neither convex nor concave function
with respect to the nonnegative optimization variables, i.e., the
transmit power vector P. Moreover, the PU outage probabili-
ties in (8) are non-convex on P. Therefore, P1 is generally a
non-linear non-convex optimization problem.

III. DUAL DECOMPOSITION AND OPTIMAL SOLUTION

A. Equivalent Convex Problem

By substituting (2) into (3), replacing (7) with (9), and
performing the optimization variable transformation, P̂m

l =
lnPm

l , the problem P1 is equivalently rewritten as

(P2) max
x∈X ,P̂∈P̂

∑
s∈S

Us(xs)−
∑
l∈L

∑
m∈M

eP̂
m
l (11)

subject to
∑

s∈S(l)

xs ≤
∑

m∈M
ln (γm

l (eP̂
m

)), ∀l, (12)

L∑
l=1

mk+1−1∑
m=mk

ln(1 + ρm,k
l βm,k

l eP̂
m
l ) ≤ lnμk, ∀k, (13)

where P̂ = {P̂m
l ; ∀l,m| lnPmin

l ≤ P̂m
l ≤ lnPmax

l }.

Theorem 1. The transformed problem P2 is an convex
optimization problem.

Proof: All the constraints (12) and (13) are convex in
(x, P̂) since the log-sum-exp is convex in its domain [19].
Moreover, the utilities in (11) are assumed to be strictly
concave. Therefore, P2 is convex in (x, P̂).

B. Dual Decomposition and Optimal Solution

By augmenting the objective function (11) with a weighted
sum of the constraints (12) and (13), we obtain the Lagrangian
function of P2:

L(x, P̂,λ,ν) =
∑
s∈S

Us(xs)−
∑
l∈L

∑
m∈M

eP̂
m
l

−
∑
l∈L

λl

( ∑
s∈S(l)

xs −
∑

m∈M
ln (γm

l (eP̂
m

))

)
(14)

−
∑
k∈K

νk

( L∑
l=1

mk+1−1∑
m=mk

ln
(
1 + ρm,k

l βm,k
l eP̂

m
l

)
− lnμk

)
,

where λ = [λ1, ..., λL] and ν = [ν1, ..., νK ] are the La-
grangian nonnegative multipliers that are interpreted as con-
gestion prices and PU outage prices to efficiently balance the
conflict resource among the SUs, respectively. The former
reflects the degree of congestion on a link while the latter
reflects the outage status of each pair of PUs. The dual
problem of P2 can be described as an unconstrained max-
min problem:

min
λ,ν

max
x∈X ,P̂∈P̂

L(x, P̂,λ,ν). (15)

Thanks to the separable nature with respect to x and P̂ of
(14), the objective function of the minimization problem in
(15) can be decomposed into the two subproblems as follows:

max
x

{
Lx(x,λ)

.
=
∑
s∈S

Us(xs)−
∑
s∈S

∑
l∈L(s)

λlxs

}
; (16)

max
P̂

{
LP̂ (P̂,λ,ν)

.
=
∑
l∈L

∑
m∈M

λl ln (γ
m
l (eP̂m

))− eP̂
m
l

−
K∑

k=1

L∑
l=1

mk+1−1∑
m=mk

νk
(
ln(1 + ρm,k

l βm,k
l eP̂

m
l )− lnμk

)⎫⎬
⎭ .

(17)

The first subproblem (16) is the canonical congestion control
problem already solved implicitly or explicitly in TCP variants
(e.g., Tahoe, Reno, Vegas and FAST), where each source
adjusts its transmission rate via the feedback of the loss-based
or delay-based congestion signal. The second subproblem (17)
is the resource allocation problem that exactly allocates the
power per subcarrier to each link.

Since P2 is a convex optimization problem [Theorem 1], a
feasible point satisfying the Slater constraint qualification in its
domain exists [20]. According to the Strong Duality Theorem
[21], there is no duality gap. Hence, the optimal solution of the
maximization problem in (15) can then be obtained by solving
the dual problem (15) via the iterative distributed algorithm
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JCPC-OP. For simplicity of presentation, we use the same step
size κt for all updates without loss of generality. In practice,
the step sizes may be different provided that the updates jointly
achieve the best convergence.

We also note that JCPC-OP is implemented in a distributed
manner as follows:

1) The source algorithm can preserve the existing TCP con-
gestion mechanism, where source s gets the aggregate
congestion price λs =

∑
l∈L(s) λl accumulated through

a feedback message from its destination in the path of
s. Then, source s adjusts its rate using (18).

2) In the link algorithm, the SU-Rx of link h locally
measures γm

h (Pm) on each subcarrier and broadcasts
its message RxCtrlMsg containing M real-value fields
reserved for χ

m,(t)
h , ∀m ∈ M. The SU-Tx of link

l receives RxCtrlMsg with χ
m,(t)
h and TxCtrlMsg

with P
m,(t)
h , ∀h �= l , estimates Sm

hl through training
sequence, and updates its transmit power per subcar-
rier by (19) via congestion price (20) and PU out-
age price (21). Then, the SU-Tx of link l broadcasts
TxCtrlMsg containing M real-value fields reserved for
P

m,(t)
l , ∀m ∈ M.

3) At each SU-Tx, the congestion price update (20) re-
quires only links local information for ingress rate and
SIR.

4) At each SU-Tx, the PU outage price update (21) needs
P

m,(t)
h , ∀m ∈ M through TxCtrlMsg received from

the other SU-Tx and ρm,k
l =

Gm
0lγ

k
th

Gk
00P

k
0

declared by the PU
system.

Algorithm 1. Optimal JCPC Algorithm (JCPC-OP)
Primal/dual variables are updated iteratively until convergence.
• Congestion Control: The source rate updates

x(t+1)
s (λs) =

[
U

′−1
s

(
λ(t)
s

)]Xs

, (18)

where λ
(t)
s =

∑
l∈L(s) λ

(t)
l .

• Power Control: The link power updates per subcarrier

P
m,(t+1)
l =

[
P

m,(t)
l + κt

(
λ
(t)
l

P
m,(t)
l

−
∑
h�=l

χ
m,(t)
h Sm

hl

−ν
(t)
k

ρm,k
l βm,k

l

1 + ρm,k
l βm,k

l P
m,(t)
l

− 1

)]Pl

, (19)

where χ
m,(t)
h =

λhγ
m,(t)
h

Sm
hh

P
m,(t)
h

.

• Congestion price updates

λ
(t+1)
l =

[
λ
(t)
l + κt

( ∑
s∈S(l)

x(t)
s − Cl(P

(t))

)]R+

. (20)

• PU outage price updates

ν
(t+1)
k =[

ν
(t)
k + κt

(
L∑

l=1

mk+1−1∑
m=mk

ln(
1 + ρm,k

l βm,k
l P

m,(t)
l

μk
)

)]R+

(21)

where [x]A is the projection of x onto the feasible set A, κt is
the positive scalar step-size and U

′−1
s (.) is the inverse of the first

derivative of utility.

Proposition 1. Source rate update (18) solves the congestion
control subproblem (16) for the fixed primal variables λ.

Proof: Since Lx(x,λ) is strictly concave and separable
in x, maximizer

xs(λs) = arg max
xs∈X

∑
s∈S

Us(xs)−
∑
s∈S

λsxs.

can be found by the Karush-Kuhn-Tucker (KKT) necessary
conditions [20, Proposition 3.3.1]. In fact, we take the first-
order derivative of Lx(x,λ) with respect to xs. Then we have
(18) by letting the resulting quantity equal zero.

Proposition 2. Link power update (19) solves the power
allocation subproblem (17) for a pair of fixed primal variables
(λ,ν).

Proof: Since LP̂ (P̂,λ,ν) is strictly concave in P̂, its first-
order derivative with respect to P̂m

l is given by

∂LP̂ (P̂,λ,ν)

∂P̂m
l

= λl − eP̂
m
l −

∑
h �=l

λh
Sm
hle

P̂m
l

ηh +
∑
j �=h

Sm
hje

P̂m
j + Imh0

− νk
ρm,k
l βm,k

l eP̂
m
l

1 + ρm,k
l βm,k

l eP̂
m
l

.

Using the facts that ∇lLP (P,λ,ν) = 1
Pm

l
∇lLP̂ (P̂,λ,ν) and

Pm
l = eP̂

m
l , we then adopt the projected gradient-ascent

method [21]:

P
m,(t+1)
l =

[
P

m,(t)
l + κt

∂LP (P(t),λ(t),ν(t))

∂Pm
l

]Pl

with a step size κt ≥ 0 for link power updates as (19).
Coming back to the dual problem (15), the objective is

differentiable for all λ and ν. Therefore, we can also apply
the projected gradient-descent method [21] to solve the dual
problem (15) via link congestion price updates (20) and
primary outage price updates (21).

Theorem 2. For any initial source rates x(0) ∈ X , link
powers P(0) ∈ P and shadow prices (λ(0),ν(0)) ≥ 0, the
sequence of primal-dual variables generated by JCPC-OP
converges to the global optimum of the original problem P1
provided that the step sizes satisfy:

κt ≥ 0, lim
t→∞κt = 0,

∞∑
t=0

κt = ∞,
∞∑
t=0

(κt)
2 < ∞. (22)

Proof: From Propositions 3 and 4, we conclude that
JCPC-OP solves P2. For any initial values of the primal and
dual variables, and the step sizes satisfying (22), JCPC-OP
always converges to a unique point [21]. Since P2 is a convex
optimization problem [Theorem 1], any locally optimal point
obtained from JCPC-OP is also the global optimum [20].

IV. NEW HEURISTIC-BASED SUBOPTIMAL SOLUTION

In the previous section, we proposed the JCPC-OP algo-
rithm in which the optimal congestion control and power
control are jointly designed for OFDM-based multi-hop CRNs.
The aim of this scheme is to maximize the net revenue of
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secondary system while keeping the PU outage probabilities
below the predefined thresholds. However, the highly induced
computational complexity, large signaling overhead, and the
PU-related links’ CSI may make the system infeasible and
unscalable in practice. Using a suboptimal solution to address
these shortcomings with a low computational complexity is
desired. Deploying the noisy estimation of the PU outage
probabilities in conjunction with local measurements, the
SUs can alternatively adjust their rates and powers via the
PU outage prices and congestion prices with neither explicit
message passing nor the PU-related links’ CSI.

Here, we also use the same approach of dual decomposition
technique as discussed in Section III to solve P1. However,
the Lagrangian is taken on the basis of the original problem
P1 instead of the equivalent convex problem P2 as follows:

L(x,P,λ,ν) =
∑
s∈S

Us(xs)−
∑
l∈L

∑
m∈M

Pm
l −

∑
l∈L

λl

∑
s∈S(l)

xs

+
∑
l∈L

λlCl(P)−
∑
k∈K

νk

(
Pr[γk

0 (P
k) ≤ γk

th]− ζkth

)
. (23)

The dual problem of P1 can be expressed as an unconstrained
max-min problem:

min
λ,ν

max
x,P

L(x,P,λ,ν). (24)

Our major task is to solve the primal problem of P1 (i.e., the
maximization problem in (24)) via the dual variables λl and
νk. In fact, the objective in (24) can be decomposed into two
separate subproblems with respect to primal variables x and
P as follows:

max
x∈X

⎧⎨
⎩Lx(x,λ)

.
=
∑
s∈S

Us(xs)−
∑
s∈S

∑
l∈L(s)

λlxs

⎫⎬
⎭; (25)

max
P∈P

{
LP (P,λ,ν)

.
=
∑
l∈L

λlCl(P)−
∑
l∈L

∑
m∈M

Pm
l

−
∑
k∈K

νk

(
Pr[γk

0 (P
k) ≤ γk

th]− ζkth

)}
. (26)

The optimal solution of the unchanged subproblem (25) is still
the same as (18) in JCPC-OP. Our most important task is now
moving forward to the power allocation subproblem (26).

A. Estimation of PU Outage Probability and Dual Solution

We assume that the number of outage events of the kth PU-
Rx observed during the power update interval T is NT

k . Then,
the noisy estimation of the kth PU-Rx outage probability
Pr[γk

0 (P
k) ≤ γk

th] is [22]:

ζ̂
(T )
k =

{
1/(Rk × T ), if NT

k = 0,
NT

k /(Rk × T ), otherwise
(27)

where Rk and Rk×T represent the packet rate and the number
of packets emitted by the k-th PU-Tx during power update
interval T , respectively. It is clear that ζ̂

(T )
k becomes more

accurate as T is large enough. However, it takes a longer time
for the noisy estimation based solutions to converge.

Since L(x,P,λ,ν) given by (19) is affine in (ν, λ), its
sub-gradients with respect to λ and ν yield:

∂L(x,P,λ,ν)
∂λl

=
∑

s∈S(l)

xs − Cl(P); (28)

∂L(x,P,λ,ν)
∂νk

= Pr[γk
0 (P

k) ≤ γk
th]− ζkth = ζ̂k − ζkth. (29)

The dual problem (24) can be solved using the sub-
gradient projection method [21], where the congestion prices
λl(l ∈ L) and the primary outage prices νk(k ∈ K)
are adjusted in the descending direction of sub-gradients
∇λL(x,P,λ,ν), and ∇νL(x,P,λ,ν), respectively.

B. Power Allocation Algorithm

Next, we substitute the constraint on the PU outage proba-
bility (9) into (26) (since (9) is equivalent to (7)), the power
allocation subproblem maxP∈P LP (P,λ,ν) is rewritten as
follows:

max
P∈P

{
LP (P,λ,ν) =

∑
l∈L

λlCl(P) −
∑
l∈L

∑
m∈M

Pm
l

(30)

−
∑
k∈K

∑
l∈L

mk+1−1∑
m=mk

νk

(
ln(1 + ρm,k

l βm,k
l Pm

l )− lnμk
)}

.

As can be observed from (30), LP (P,λ,ν) are generally
not concave in P. To solve (30), we equivalently transform
this non-convex subproblem (30) into an approximate convex
optimization problem using a fixed rate assignment approach.
Then, we propose an iterative power allocation algorithm and
prove that it converges to the unique fixed point.

We assume that prior to each power update iteration, the
link’s ingress rate allocated by the congestion control policy
(25) is fixed. Hence, the link powers Pm

l must be controlled
in such a way that its capacity can meet bandwidth demand,
i.e.,

∑
s∈S(l)

xs ≤ Cl(P) =
M∑

m=1

ln (γm
l (Pm)) , ∀l ∈ L. (31)

Consequently, the SIR requirement of each link at its ingress
rate

∑
s∈S(l) xs is given by

M∏
m=1

γm
l (Pm) ≥ exp

( ∑
s∈S(l)

xs

)
.
= SIRth

l , ∀l ∈ L. (32)

Under this fixed rate assignment scheme, the power allocation
subproblem (30) is equivalent to the problem seeking a feasi-
ble power vector P to minimize the total interference impact
on PUs while satisfying the SIR constraints (32) as follows:

(P3) min
P∈P

∑
k∈K

∑
l∈L

mk+1−1∑
m=mk

νk ln
(
1 + ρm,k

l βm,k
l Pm

l

)

+
∑
l∈L

∑
m∈M

Pm
l (33)

s.t.

M∏
m=1

γm
l (Pm) ≥ SIRth

l , ∀l ∈ L.
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The set of constraints on SIR in (33) can be rewritten as

Pm
l ≥ SIRth

l

Ωl(Pm)
∏

n�=m γn
l (P

m)

.
= Ψm

l (Pm), ∀l ∈ L, (34)

where

Ωl(Pm) =
Sm
ll

ηl +
∑
h �=l

SlhPm
h + Iml0

, (35)

and Ψm
l (P) is the effective interference impact on the link l

on subcarrier m. Since the objective of (33) is not convex in
P, the link powers are transformed logarithmically to ensure
that it is convex. The problem (33) is equivalent to

(P4) min
P̂∈P̂

h(P̂) .
=
∑
k∈K

∑
l∈L

mk+1−1∑
m=mk

νk ln
(
1 + ρm,k

l βm,k
l eP̂

m
l

)

+
∑
l∈L

∑
m∈M

eP̂
m
l (36)

s.t. ln eP̂
m
l ≥ lnΨm

l (P̂), ∀l ∈ L. (37)

Proposition 3. For a given pair of (x,ν), P4 is convex in
P̂ .

Proof: We note that νk and xs respectively represent the
PU outage status and the ingress rate before performing a
power update. In this regard, they can be assumed to be fixed.
Therefore, the objective of (36) is clearly convex. Additionally,
the set of constraints (37) can be rewritten as

ln SIRth
l +

M∑
i=1

ln

(
ηl+

∑
h �=l

Si
lhe

P̂ i
h + Iil0

)
−

−
M∑
i=1

(
lnSi

ll + P̂ i
l

)
≤ 0, ∀l ∈ L

which are convex in P̂ because the log-sum-exp is convex [19].
Hence, P4 is convex.

Then, the optimal solution of (36) can be found via an
iterative power control algorithm modifying gradient-descent
method [21] after transforming back to P-space as follows:

P
m,(t+1)
l =

[
P

m,(t)
l − κt

(
∂h(P(t))

∂Pm
l

P
m,(t)
l −Ψm

l (P(t))

)]Pl

.

(38)

Proposition 4. The power control algorithm (38) solving the
subproblem (36) for a pair of fixed variables (x,ν) converges
to a unique fixed point.

Proof: First, it is apparent from (34) that Ψm
l (P) is a

function satisfying the triple properties of positivity, mono-
tonicity, and scalability for all P ∈ P . Since ∇h(P) � 1, we
have the following inequalities:

Ψm
l (P(t)) ≤ P

m,(t)
l ≤ P

m,(t)
l

∂h(P(t))

∂Pm
l

, ∀l ∈ L. (39)

Hence,

∂h(P(t))

∂Pm
l

P
m,(t)
l −Ψm

l (P(t)) ≥ 0, ∀l ∈ L. (40)

With the step size κt satisfied (22), Pm,(t)
l is a monotonically

decreasing sequence. Since this sequence has a lower-bound
of Pmin

l , the power control algorithm (38) always converges
to the optimum P∗. In other words, since P4 is convex
[Proposition 3], P∗ is the unique optimal point [19].

C. Sub-Optimal JCPC Algorithm

Finally, the optimal solution of P1 can now be readily
found via the following iterative algorithm.

Algorithm 2. Sub-Optimal JCPC Algorithm (JCPC-SOP)
Primal/dual variables are updated iteratively until convergence.
• Congestion Control: The source rate updates using (18).
• Power Control: The link power updates per subcarrier

P
m,(t+1)
l =

[
P

m,(t)
l + κt

(P
m,(t)
l exp

( ∑
s∈S(l)

x
(t)
s

)
∏M

m=1 γ
m
l (Pm,(t))

−

− ν
(t)
k ρm,k

l βm,k
l P

m,(t)
l

1 + ρm,k
l βm,k

l P
m,(t)
l

− P
m,(t)
l

)]Pl

. (41)

• Congestion price updates:

λ
(t+1)
l =

[
λ
(t)
l + κt

( ∑
s∈S(l)

x(t)
s − Cl(P

(t))

)]R+

. (42)

• PU outage price updates:

ν
(t+1)
k =

[
ν
(t)
k + κt

(
ζ̂k − ζkth

)]R+

. (43)

Theorem 3. For any initial source rate vector x(0) ∈ X ,
link power vector P(0) ∈ P , shadow prices (λ(0),ν(0)) ≥ 0,
and κt satisfying (22) the sequence of primal-dual variables
generated by JCPC-SOP converges to the point near the
global optimum of the original problem P1.

Proof: In the iterative procedure of JCPC-SOP, the con-
gestion control portion is referred to in the current step,
whereas the power control portion is the result from the solu-
tion of the previous step. In each step, only the congestion con-
trol subproblem (25) is globally maximized and the obtained
solution is used for forming a new convex approximation (36)
of the non-convex power allocation subproblem in (26). The
results achieved from this new convex problem are used for
the next iteration of the algorithm. Hence, from the point
view of network, the optimal powers obtained by JCPC-SOP
is local. By Proposition 1 & 4, JCPC-SOP converges to the
local fixed optimum. However, from the point view of link, the
value of achievable optimal powers per band are global since
P4 is convex [Proposition 3]. In association of the following
experimental results in Section V, we strongly conclude that
the solution of JCPC-SOP reaches the global optimum of the
original problem P1 with a negligible gap.

Our JCPC-SOP algorithm can be implemented in a dis-
tributed manner without control information exchange:

1) The congestion control mechanism is still the same as
described in JCPC-OP. In fact, it can preserve TCP stack
by embedding congestion prices in a header field of
control packets traversing the source’s reverse path.
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(a) Physical/logical topologies for a coexistence of PUs/SUs.
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(PU 1)
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(PU K)
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km1m 2m ... ... Km

mW

subcarrier index

(first subcarrier of subchannel k)

(b) Spectrum allocation in OFDM-based CRN systems.

Fig. 1: System model of OFDM-based multi-hop CRNs.

2) The power control strategy requires only the link’s
local SIR measurement per subcarrier and the allocated
ingress rate

∑
s∈S(l) x

(t)
s without message passing.

3) The congestion price updates use only the link’s local
information such as ingress rate and SIR.

4) The PU outage price updates are based on the number of
outage feedbacks from primary links that can be locally
measured by SUs.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We consider a multi-hop CRN system with N = 5 secondary
nodes, K = 2 pairs of PUs and 4 flows as illustrated in Fig.
1. We assume that the system has two sub-channels. The
first sub-channel consists of the subcarriers 1-3 while the
second sub-channel consists of the subcarriers 4-8. They are
licensed to two primary links, respectively. We choose path
loss exponent n = 4 and the Rayleigh fading channel with
mean E(Flk) = 1. Each secondary link with a transmit power
constraint of Pmin

l = 1.5mW and Pmax
l = 400mW per

subcarrier can access all the licensed subcarriers, bandwidth
of each subcarrier is Wm = 0.125MHz. The minimum data
rate for each elastic flow is xmin = 100bps, while xmax is
adjusted dynamically with respect to link capacities. The target
BER = 10−4 corresponding to MQAM modulation is the
same for all secondary nodes with GMC = −1.5/ log(5BER)
[18]. For PUs, we set the outage probability thresholds for
the licensed subchannels 1 and 2 as 75% and 60%, re-
spectively. The SIR thresholds for PU receivers 1 and 2
are γ1

th = 4.71dB and γ2
th = 6.02dB at transmit powers

20dBm and 23dBm, respectively. The PSD of white noise is
assumed to be −174dBm/Hz at the PU and SU receivers.
We choose Us(xs) = log xs as the source’s utility function
for all secondary nodes. The criterion used to evaluate the

(a)

(b)

Fig. 2: Convergence of aggregated utility which is averaged
over 20 random realizations of the logical topologies versus
BER (a) and PU outage probability (b) at ε = 10−5.

convergence of algorithms is max ‖P∗(t) − P∗(t−1)‖ ≤ ε,
where ε = 10−5 is the error tolerance. The step sizes of both
algorithms are chosen as follows: the power updates (6e−3/t),
the congestion price updates (e−13/t), and the PU outage price
updates (125/

√
t)

B. Performance of the Proposed Algorithms

In this experiment, we investigate the evolution of the
two proposed algorithms and confirm the practical optimality
achieved by them. Fig. 2a shows that the aggregate utilities
of our proposed algorithms (i.e., JCPC-OP and JCPC-SOP)
converge to the optimum within a reasonable time at some
various values of BER. Their trajectories also show that the
gap between JCPC-OP and JCPC-SOP is negligible. This is
a remarkable point for the close-to-optimal solution with no
message passing, JCPC-SOP. Fig. 2b shows that the PU outage
probabilities due to secondary transmissions converge to their
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Fig. 3: The optimal allocated power at the average
small-scale fading gains per subcarrier corresponding to
[1.7, 0.31, 1.6, 0.3, 1.2, 0.7, 2.0, 0.15] and ε = 10−5.

pre-specified thresholds for both JCPC-OP and JCPC-SOP. As
can be observed from Fig. 3, the transmit power depends not
only on the mutual interference among SUs, but also on the
physical distance between SUs and PUs. Moreover, they are
also affected by fading channel conditions. Also, the optimal
rate in Fig. 4 shows that the greedy sources try to get a larger
rate to obtain a higher utility. However, sources must follow
the diminishing marginal return due to the concave property
of the utility function. They must just their rate via both the
congestion prices and the PU outage prices, which reflect the
total cost to pay.

Next, we compare the performance of our algorithms with
some TCP Vegas’s congestion control schemes without cou-
pling our proposals, i.e.,

• Scheme 1 allocates the fixed maximum power 400mW
to all links per subcarrier.

• Scheme 2 allocates the fixed powers as P 1−3
1 =

2mW ;P 4−8
1 = 400mW ;P 1−3

2 = 50mW ;
P 4−8
2 = 1mW ;P 1−3

3 = 400mW ;P 4−8
3 =

1mW ;P 1−3
4 = 400mW ;P 4−8

4 = 120mW .
• Scheme 3 allocates the fixed powers as P 1−3

1 =
100mW ;P 4−8

1 = 200mW ;P 1−3
2 = 25mW ;

P 4−8
2 = 10mW ;P 1−3

3 = 300mW ;P 4−8
3 =

2mW ;P 1−3
4 = 400mW ;P 4−8

4 = 340mW .

Fig. 5 shows that the TCP Vegas’s schemes cannot achieve
as high net revenue as JCPC-OP and JCPC-SOP, even in some
cases in which their spectrum utilizations exceed the pre-
specified PU outage thresholds of PU1 (75%) and PU2 (60%)
as in schemes 1 and 3. This is because the power randomly
allocated to each link per subcarrier does not address the
spectrum sharing problem and their mutual interference. For
example, at TCP Vegas’s scheme 3, compared with the JCPC-
OP’s optimal powers as in Fig. 6, it is not sufficient to allocate
more power to subcarriers 4-8 on the link 4 and less power to
subcarriers 4-8 on the link 1. This wrong power allocation
causes not only the excessive harmful interference to PUs
but also serious degradation of the secondary system’s per-

Fig. 4: Convergence of source rate and link capacity using
JCPC-OP at ε = 10−5.

formance (e.g., scheme 1’s performance is the worst although
it spends the more spectrum and power than the others).

C. Effect of Link Behavior on Objective Function

As can be observed from Fig. 7, when the link 2’s con-
gestion price is increasing, the link 2 must raise its power
(as shown in Fig. 6) and the sources 2 and 3 traversing the
link 2 must simultaneously reduce their rates (as illustrated in
Fig. 4) because the price decrease of the other links (i.e., links
1 and 3) on their path can not compensate this link 2’s inflicted
price increase. When the link 2’s capacity is accelerated by the
increase of power and becomes greater than the total ingress
rate, the link 2’s congestion price starts to decrease so that
the sources 2 and 3 can pay the lower cost, then raise its
rates, and the total ingress rate may catch up to its increasing
capacity. At this time, the link 2’s powers on all subcarriers
are still increasing until convergence (as shown in Fig. 6). This
is because the link 2 has not used up its potential spectrum
opportunity as shown via the PU outage probability in Fig. 2b.

In contrary, the links 1, 3, and 4 reduce their powers to
raise the values of objective function (i.e., net revenue) when
both their capacities are larger than the total ingress rates
and their powers are still larger than the minimum powers,
as shown in Figs. 4, 6, and 7. Note that the powers of links 1,
3, and 4 increase on some of their subcarriers but decrease
on some of their other subcarriers due to the adjustment
of their mutual interference and spectrum fairness allocation
strategy. However, their average powers are decreasing so as to
minimize energy consumption and maximize the net revenue.

It is noteworthy that the total rate of the traffic through one
link equals its capacity at the optimality. This may be obtained
only if the link capacity is larger than the total rate of the traffic
through this link and none of its decreasing powers reaches
the minimum value before convergence. In this regard, we can
clearly see from all links’ behavior in JCPC-OP’s. And, we
can conclude that the link 3’s capacity exactly equals the sum
of the link 2’s and the link 4’s capacities as in Fig. 4.



2110 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 8, AUGUST 2012

Fig. 5: Evolution of proposals and TCP-Vegas Schemes at
BER = 10−4; where Schemes 1, 2, and 3 randomly allocate
the fixed powers to all links and AU=Aggregated Utility,
TEC=Total Energy Consumption, PU OP= Primary User Out-
age Probability, NV= Net Revenue, CPP= Cost Per unit of
consumed Power.

Fig. 6: Trajectory of link powers using JCPC-OP.

D. Aggregate Utility under the OFDM-based Spectrum Un-
derlay and PU Outage Approach

In this section, we examine the aggregate utility under the
OFDM-based spectrum underlay and PU outage approach.
First, we investigate the effect of the number of subcarriers and
the PU outage probability thresholds on the aggregate utility.
In Fig. 8, we observe that for a fixed number of subcarriers,
the aggregate utility increases as we continue relaxing the
PU outage probability thresholds. This is because the more
PU outage probabilities are relaxed or the more interference
the PUs tolerate, the more additional spectrum opportunity is
definitely brought to the SUs. Similarly, increasing the number
of subcarriers on each subchannel raises the aggregate utility

Fig. 7: Trajectory of congestion price on links using JCPC-OP.

Fig. 8: Aggregated utility vs. number of subcarriers vs. PU1
outage probability using JCPC-OP with ζ2th = 60%.

for the fixed PU outage probability thresholds.
Next, we vary the distance parameter d0 and note the PU1’s

position differentiation when it moves horizontally in order to
show the relationship between the spectrum opportunity and
the distance between the SUs and the PUs. In this regard,
we fix the PU2’s position and the PU outage probability
thresholds. It can be seen from Fig. 9 that the secondary link
capacities quickly increases as d0/d increases and vice versa.
The reason is that the harmful interference, introduced by the
SUs, is inversely proportional to the distance between them
and the PUs. Hence, the SUs can adjust their transmit power
to achieve optimal capacity while keeping the PU outage
probability at the target. As a result, in the low d0 regime,
the link 1’s capacity increases when the PU1 moves far away
from it while the capacities of links 2, 3, and 4 gradually
decrease because the PU1 comes closer to them. We can see
a similar relationship in the high d0 regime. Finally, Fig. 10
shows the saturation effect of aggregate utility and PU outage
probabilities to the maximal transmit power Pmax

l . In the low
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Fig. 9: Effect of PU1’s position while fixing PU2’s position.

Fig. 10: Saturation effect of aggregate utility and PU outage
probability as Pmax

l increases.

and middle Pmax
l regime, the aggregate utility increases as the

available power increases. However, when Pmax
l is greater

than a certain turning point, the aggregate utility does not
increase further because the PU outage probability constraints
and the SU mutual interference constraints that are implicitly
represented by the link capacity constraints become dominant.
Also, in the power-limited regime, the PU outage probabilities
are much lower than their corresponding outage thresholds
ζ1th = 75% and ζ2th = 60%. If we continue increasing Pmax

l in
the PU outage-limited regime, then the PU outage probabilities
are saturated to their corresponding outage thresholds.

E. Fairness in Resource Allocation

Fig. 11 shows the fairness index versus the number of
active sessions for our considered algorithms. We use Jain’s
fairness index (

∑S
s=1 xs)

2/(S ∗∑S
s=1 x

2
s) as a standard fair-

ness measurement. Here, we can see that the overall fairness
among competing sources achieved by JCPC-OP is slightly
better than that achieved by JCPC-SOP. This observation

Fig. 11: Fairness index versus the number of active sessions.

verifies the feasibility of the heuristic-based algorithm, JCPC-
SOP. Moreover, our proposed algorithms are stable when
the sessions are dynamic because the algorithms adaptively
adjust source rates and link powers according to the current
transmissions.

VI. CONCLUSION

In this paper, the joint congestion control and power
control scheme in OFDM-based multi-hop CRNs is studied.
We specifically consider the co-existence of licensed and
unlicensed users and the spectrum opportunity under the
unique outage constraints in a spectrum underlay fashion. A
distributed algorithm, JCPC-OP, is proposed to achieve the
optimal power allocation vector for each link per subcarrier
as well as rate for each source. Although the JCPC-OP algo-
rithm’s attraction is the global optimality, its message passing
brings an overhead burden. A suboptimal algorithm without
message passing, JCPC-SOP, is also proposed to alleviate this
issue. Fairness in resource allocation and energy efficiency are
kindly investigated to maximize the social welfare, as well.
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