
ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al. 733

In the context of multi-protocol label switching (MPLS)
traffic engineering, this paper proposes a scalable constraint-
based shortest path first (CSPF) routing algorithm with
multiple QoS metrics. This algorithm, called the multiple
constraint-based shortest path first (M_CSPF) algorithm,
provides an optimal route for setting up a label switched path
(LSP) that meets bandwidth and end-to-end delay
constraints. In order to maximize the LSP accommodation
probability, we propose a link weight computation algorithm
to assign the link weight while taking into account the future
traffic load and link interference and adopting the concept of
a critical link from the minimum interference routing
algorithm. In addition, we propose a bounded order
assignment algorithm (BOAA) that assigns the appropriate
order to the node and link, taking into account the delay
constraint and hop count. In particular, BOAA is designed to
achieve fast LSP route computation by pruning any portion
of the network topology that exceeds the end-to-end delay
constraint in the process of traversing the network topology.
To clarify the M_CSPF and the existing CSPF routing
algorithms, this paper evaluates them from the perspectives
of network resource utilization efficiency, end-to-end quality,
LSP rejection probability, and LSP route computation
performance under various network topologies and
conditions.

Keywords: Packet scheduler, flow aggregation, rate
control, IntServ, DiffServ, QoS.

Manuscript received Aug. 26, 2004, revised July 11, 2005.
This work was supported by MIC and ITRC Project.
Daniel W. Hong (phone: +82 42 866 3821, email: wkhong@kt.co.kr) is with the Operation

Support System Lab., KT, Daejeon, Korea. Choong Seon Hong (phone: +82 31 201 2532,
email: cshong@khu.ac.kr) is with the Department of Computer Engineering, Kyung Hee
University, Seoul, Korea.

Gil-Haeng Lee (email: ghlee@etri.re.kr) is with the Broadband Convergence Network
Research Division, ETRI, Daejeon, Korea.

I. Introduction

Multi-protocol label switching (MPLS) is an Internet
Engineering Task Force (IETF)-defined protocol that
overcomes some of the shortcomings of IP-based networks.
MPLS is meant for service provider core networks or large
enterprise networks. There are two major benefits of MPLS
traffic engineering: better total network use efficiency and
better end-to-end quality for each traffic flow. To achieve
these objectives, MPLS supports two traffic-engineering
protocols: resource reservation protocol-traffic engineering
(RSVP-TE) [1]-[4] and constraint-based label distribution
protocol (CR-LDP) [1], [3], [5]-[7]. However, these protocols
can manage only the bandwidth resource, the routing
protocol is not defined in these protocols. In designing a
network where traffic engineering is performed, the selection
of routing algorithms and network topologies is believed to
exert a great influence on the end-to-end quality and overall
network resource utilization.

In the case of constant bit rate (CBR), traffic demands are
placed dynamically, often on a first-come-first-serve basis.
Routes are calculated one by one using the appropriate
algorithm; for example, constraint-based shortest path first
(CSPF) [8], shortest-distance path (SDP) [3], widest-shortest
path (WSP) [3], or shortest-widest path (SWP) [9] algorithms
as individual routes are computed meeting the quality-of-
service (QoS) constraints.

On the other hand, fine-grained traffic engineering is also
important. In order to achieve this, we generally consider
multiple QoS metrics such as bandwidth, delay, jitter,
administrative weight, and others, although this traffic
engineering causes the NP-complete problem.

In addition, the minimum interference routing algorithm

M_CSPF: A Scalable CSPF Routing Scheme with
Multiple QoS Constraints for MPLS Traffic Engineering

 Daniel W. Hong, Choong Seon Hong, and Gil-Haeng Lee

734 Daniel W. Hong et al. ETRI Journal, Volume 27, Number 6, December 2005

(MIRA) proposed in [10] explicitly takes into account the
location of the ingress and egress routers. The key idea of
MIRA is to route an incoming connection over the path that
least interferes with possible future requests. However, this
complexity of MIRA is too great to apply in a real operational
environment. Also, it does not consider the future traffic load
and only meets the bandwidth constraint.

Thus, this paper proposes a scalable constraint-based shortest
path first (CSPF) routing scheme, called the multiple CSPF
(M_CSPF) routing algorithm, with the bandwidth and end-to-
end delay QoS constraints. M_CSPF is designed to support the
on-line setup of an optimal label switched path (LSP) in an
MPLS network, taking into account better efficiency in terms
of network resource utilization and better end-to-end quality. It
consists of two steps: the first is assigning the appropriate
weight to the network topology, and the second is finding the
optimal shortest path.

In order to assign the appropriate weight to the network
topology while taking into account the total traffic load and link
interference, we propose a link weight computation algorithm
(LWCA) that, for the first time, introduces the future traffic
load and adopts the concept of a critical link from MIRA [10].
Future traffic load can be defined as the anticipating LSP
requests between arbitrary source and destination pair. In terms
of network planning, a network service provider adjusts the
network capacity according to the future traffic estimation,
which takes a long time. However, in terms of MPLS traffic
engineering, we should consider maximization of network
resource utilization under the current network capacity.
Therefore, we must consider the future traffic arrival or the
future LSP requests to maximize the LSP accommodation ratio.
MIRA only takes into account the critical link to identify the
link interference, but our approach considers both the critical
link and the future traffic load. By adding the future traffic load
concept, we can achieve a more enhanced LSP
accommodation ratio.

In addition, we propose a bounded order assignment
algorithm (BOAA) that allocates the proper orders to the node
and link considering the delay based on the weighted network
graph created by LWCA. The ordered network graph created
by BOAA is used to find the optimal LSP route that conforms
to the bandwidth and end-to-end delay constraints. BOAA is
designed to enhance the LSP route computation performance
by pruning some portions of the weighted network graph that
exceed the requested end-to-end delay constraint in the process
of the order assignment process.

Because the major objective of MPLS traffic engineering is
enhancing the efficiency of network resource utilization and
end-to-end quality, we measured the efficiency of network
resource utilization and the end-to-end quality of the proposed

algorithm and other algorithms, WSP, SWP, SDP, and MIRA,
under three different network topologies: flat tree,
hierarchical ring, and torus. In addition, we also measured the
LSP setup rejection probability of our algorithm and MIRA
under an unbalanced topology and a balanced network
topology with a large number of critical links. We also
compared the LSP computation performance of our
algorithm and MIRA by gradually adding four nodes and by
increasing the value of the end-to-end delay constraint under
the torus network topology.

This paper is organized as follows: Section II describes the
existing routing algorithms and QoS constraints. Section III
describes the M_CSPF composed of two subsequent steps,
which are weight decision and optimal route selection that
takes into account the two additive metrics of bandwidth and
end-to-end delay. Section IV describes the performance
evaluation results of the existing algorithms and the M_CSPF
routing algorithm under the target network topologies
described in section II. Finally, we summarize our work and
discuss some future research directions.

II. The Existing Algorithms for MPLS Traffic Engineering

There are some QoS routing algorithms [4], [11]-[16] that
define the framework and techniques for QoS routing in the
Internet, and focus on the selection and maintenance of packet-
forwarding paths capable of meeting specific service class
objectives [17]. These QoS routing algorithms compute the
routing table using the parameter of unreserved bandwidth as
the QoS constraint [18], and each LSP reserves the bandwidth
exclusively in links through which the LSP passes. These
routing algorithms accommodate successive LSPs in
consideration of the unreserved bandwidth. These QoS routing
algorithms can be installed with easy modification, and they
are chosen by many. We consider the following CBR
algorithms for verifying the efficiency and end-to-end quality
of M_CSPF. CBR algorithms apply the extended interior
gateway protocol (IGP) parameters to the tree to find a
suitable path. Normally, the available bandwidth and hop
count may be used to determine paths using the three
algorithms discussed below.

Computing optimal routes subject to two or more constraints
is an NP-complete problem. Mostly, the algorithms work on
available bandwidth and hop count for selecting a path
between a source and a destination. A constraint-based routing
scheme can choose one of the following as the route for a
destination with some tradeoffs between resource conservation
and load balancing.

•The Widest-shortest path (WSP) [2] selects the shortest

ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al. 735

feasible path. If there are several feasible paths, the one
having the largest residual bandwidth is chosen. The WSP is
an improvement of the min-hop algorithm (MHA), as it
attempts to load-balance the network traffic. In fact, WSP
selects a feasible path with minimum hop counts, and if
there are several such paths, it selects the one with the
largest residual bandwidth, thus discouraging the use of
already heavily loaded links. However, WSP still has the
same drawbacks as MHA since the path selection is
performed among the shortest feasible paths, which are used
until saturation before switching to other feasible paths. This
algorithm applies Dijkstra’s algorithm after line, in which
the unreserved bandwidth that is less than the demand
bandwidth of LSP has been trimmed.

•The Shortest-widest path (SWP) [8] selects the route in
which the minimum unreserved bandwidth of the links
along the route is largest among all the routes and whose
unreserved bandwidth exceeds the required bandwidth of
the LSP. It selects the path with the largest feasible
bandwidth. If there are several feasible paths, the one with
the minimum hop count is selected.

•The Shortest-distance path (SDP) [3] selects the path with
the shortest distance. The distance can be defined as the sum
of the inverse bandwidths of all links along the path. The
SDP routes an incoming connection along the path that
reaches the destination node using the minimum number of
feasible links. The distance for Dijkstra’s method is defined
as the reciprocal of the unreserved bandwidth of the link.
Then, this algorithm applies Dijkstra’s method:

()∑ =
=

k

j
ijR

1
/1distancemin , where Ri is the bandwidth

available on link ij.

The shortest-distance approach favors the shortest paths
when the network load is heavy and favors the widest paths
when the network load is moderate. However, this scheme
does not differentiate between the various classes of traffic, as
its only measure of cost is the available bandwidth. The widest-
shortest path approach can minimize bandwidth fragmentation.

On the other hand, MIRA, which is proposed in [10],
explicitly takes into account the location of the ingress and
egress routers. The key idea of MIRA is to route an incoming
connection over a path that least interferes with possible future
requests.

Specifically, an incoming connection request between (Si,Ti)
is routed with the goal of maximizing an objective function,
which is either the minimum-maximum flow (maxflow) of all
other ingress-egress pairs or a weighted sum of maxflows,
where weights STα assigned to each S-T pair reflect the
“importance” of the flow.

In order to achieve an on-line routing algorithm, MIRA

keeps an updated list of the critical links, that is, the links
whose use by the incoming call diminishes the maxflow
between other pairs.

When a new call has to be routed between the
source/destination pair Si,Ti, MIRA determines the set LST of
the critical links for all the source/destination pairs Sj,Tj other
than Si,Ti. The weight w of each link l is then set according to
the equation ∑ ∈

=
ST

ST
LlTS

lw
):,(

)(α , and the route that causes
the minimum interference to other source/destination pairs is
selected.

In spite of its more sophisticated functions, MIRA still has
the following limitations whose effects will be shown in the
discussion of numerical results:

•MIRA discourages the use of critical links based only on the
number of other S-T pairs that could use them, without
verifying if these S-T pairs actually use these links.
Evidently, if one of these other S-T pairs introduces a low
traffic in the network, the criticality of the links that diminish
its maxflow is far less important than that of S-T pairs that
produce a large amount of traffic. As a consequence, MIRA
preserves the use of certain links that remain underutilized,
thus causing a sub-optimal use of the network. To overcome
this limitation, maximizing the weighted sum of the
source/destination maxflows has been proposed. However,
in [19], the weights are chosen offline and do not adapt to
changes in the network traffic. Hence, this solution does not
provide the flexibility required of an on-line routing scheme.

• In its on-line implementation, MIRA sets the link weights
almost in a static way according only to their level of
criticality. In fact, the only event that can cause the re-
distribution of new weights is the saturation of some links,
which is similar to the min-hop algorithm.

•While choosing a path for an incoming request, MIRA does
not take into account how the new call will affect the future
requests of the same ingress/egress pair (auto-interference).

III. A Multiple Constraint-Shortest Path First Routing
Algorithm (M_CSPF)

In this section, we describe a scaleable CSPF routing
algorithm that can provide an optimal route that meets the two
additive metrics of bandwidth and end-to-end delay. We
assume that we can identify the future traffic arrival between all
source and destination pairs and that there is one LSP setup
request at a time. The overall M_CSPF scheme is composed of
the following three steps:

Step 1. Timing the unfavorable network topology—we prune the
links when the available bandwidth (Bava) is less than the

736 Daniel W. Hong et al. ETRI Journal, Volume 27, Number 6, December 2005

requested bandwidth (Breq) and when the number of fault
occurrences is larger than the designated threshold
assigned by the network administrator.

Step 2. Assign appropriate weight to links or nodes—we assign
the appropriate weight to links or nodes. In this paper, we
propose an algorithm for the computation of link weight
that takes high network resource utilization and high
computation performance into account under the
estimated future traffic load and current link delay.

Step 3. Compute the optimal QoS route conforming to the
bandwidth and end-to-end delay taking into account the
current network status.

The QoS constraint parameters of an LSP can be specified in
terms of minimum guaranteed bandwidth and maximum
tolerable delay and/or jitter. The main goal of a QoS routing
technique is to determine the path that can guarantee the
constraints requested by the incoming packets and reject as few
LSP requests as possible.

Let us model a network as a graph, G(N,E), where node N
represents the label switch router (LSR) or label edge router
(LER), and edge E represents the communication links, as
shown in Fig. 1.

Eik(ava, d, s)

Fig. 1. An MPLS network model for supporting QoS guaranteed
LSP.

l o

S1 D1

pi

j m Ejm(ava, d, s)

Eij(ava, d ,s)

Eik(ava, d, s) k n

Ejk(ava, d, s)
Emn(ava, d, s)

Ekn(ava, d, s)

Ekl(ava, d, s)
Eno(ava, d, s)

Elo(ava, d, s)
Eop(ava, d, s)

Enp(ava, d, s)

Emp(ava, d, s)

Eil (ava, d, s)

The traffic enters the network at ingress node Si and exits at
egress node Di. Each LSP requires a path from Si to Di. Each
edge Eij has some associated parameters such as available
bandwidth (Eij(ava)), delay (Eij(d)), and link status (Eij(s)), which
indicate the fault, congestion, or performance degradation.

A new LSP can be routed over links with Eij(ava) greater or
equal to the requested bandwidth (Rb). In addition, the link
feasibility (Eij(F)) can be defined as

.

OtherwiseNO,
)n}degradatio eperformanc|

 congestion|fault {
andif(YES,

)(










∉

>

=
)(

sE

 R(ava) E

FE
ij

bij

ij (1)

where a link can be feasible if the requested bandwidth (Rb) is
less than or equal to the available bandwidth (Eij(ava)), and the
link status (Eij(s)) is not in fault, has congestion, or has
performance degradation. Otherwise, we trim the link
(Eij(F)==NO) from G(N,E) because it is not feasible.

1. A Link Weight Computation Algorithm (LWCA)

Once the network topology has been pruned according to the
rule of (1), we determine the link weight (Eij(w)). In this section,
we describe the link weight computation algorithm (LWCA)
that determines each Eij(w), taking into account the optimal
LSP provision with bandwidth and delay constraints and the
future traffic arrival at every possible ingress LSR (∀Si).

Here, we borrowed the concepts of a critical link from
MIRA [10] to solve the problem of future traffic arrival.
However, LWCA is designed to solve the existing limitations
of MIRA and to enhance the overall performance of optimal
path computation, taking into account the multiple QoS metrics
of end-to-end delay and bandwidth.

Let us consider a uni-directional network topology with
unbalanced future traffic loads, as shown in Fig. 2. There are
three ingress/egress pairs having different future traffic loads. In
this example, we assume that there are heavier future traffic loads
from ingress S1 to egress D1 than in the others (S2-D2 and S3-D3).

There is only one possible route <a-b-c-d> between S1 and
D1. Also, there is only one possible route <g-h-i-j-k> between
S3 and D3. However, there are two different possible routes of
<e-b-c-f> and <e-h-i-j-f> between S2 and D2.

In order to calculate the link critical cost Eij(cc) at Eij, we add
two parameters to edge (E) of the network model described in
Fig. 1. One is the total traffic load (Eij(load)), which represents
the possible traffic loads at Eij to accommodate the anticipated
traffic load at each ingress LSR. The other parameter is the link
weight (Eij(w)) parameter, which maintains the link weight that is
computed with our LWCA, taking various aspects into account.

In addition, we define two additional parameters for
computing Eij(w). We define the anticipated traffic load at ingress
LSR Si as Tload(Si). Referring to Fig. 2, the Tload(S1) is

Fig. 2. A uni-directional network topology with unbalanced future
traffic loads.

S1 a

e

g

b

h

c d

f

ml k

S2

S3

D1

D2

D3

Eab

Eeb

Eeh

Ebc

Ehk

Ecd

Ecf

Elf

ElmEkl

TLOAD=100 Mbps

TLOAD=5 Mbps

TLOAD=5 Mbps

Egh

ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al. 737

Table 1. Link weight table taking into account the critical link cost, traffic load, and delay.

Links
Attributes

Eab Ebc Ecd Eeb Ecf Eeh Ejf Egh Ehk Ekl Elm

Eij (d) (ms) 2 1 1 1 2 2 1 1 1 2 1

Eij (ava) (Mbps) 500 500 500 500 500 500 500 500 500 500 500
Pcandidate (S1, D1)

Tload (S1)=100 Mbps

 Pcandidate (S2, D2)
Tload (S2)=5 Mbps
Pcandidate (S3, D3)

Tload (S3)=5 Mbps

Eij (cc) 1 2 1 1 1 1 1 1 2 2 1

Eij (load) 100 105 100 5 5 5 5 5 10 10 5

Eij (w) 2000.098 1000.205 1000.098 1000.005 2000.005 2000.005 1000.005 1000.005 1000.020 2000.020 1000.005

100 Mbps. We define all the possible candidate routes between Si
and Di as Pcandidate(Si,Di). For example, the Pcandidate(S2,D2) under
the network topology shown in Fig. 2 can be <e-b-c-f> and <e-
h-i-j-f>. The pseudo-code for LWCA is described in Fig. 3, and
the example of link weight computation under the network
topology in Fig. 2 is shown in Table 1. At first, we initialize the
link critical cost (Eij(cc)) for ∀Eij as zero. Next, we determine all
possible routes between all possible ingress and egress pairs
using the Dijkstra algorithm. In the case of Fig. 2, there are three
possible ingress/egress pairs (<S1,D1>, <S2,D2>, and
<S3,D3>). There are four possible routes as shown in Table 1.

On finding all possible routes between every ingress and
egress pairs, we determine the link interference by counting the
number of appearances of each Eij along all the possible routes
and set the number of appearances of each Eij to Eij(cc). For
example, in Table 1, Ebc(cc) can be 2 because Ebc appeared
twice, once for Pcandidate(a,d) and once for Pcandidate(e,f). If Eij(cc)
is one, it means that there is no interference. The effect of
interference is proportional to the number of Eij(cc).

Next, we compute the Eij(load) for each Eij using the
following equation:

∑ ∈=)),(),(()(iicandidateijiloadij DSPEifSTloadE . (2)

As seen in Table 1, Ebc(load) is 105 Mbps, where 100 Mbps
is for Pcandidate(S1,D1) and 5 Mbps is for Pcandidate(S2,D2).

With such information as Pcandidate(Si,Di), Eij(cc), Eij(load d),
Eij(load), and Eij(s), we compute link weight (Eij(w)) according
to (2). In computing Eij(w), we combine two aspects. The first
is the future traffic arrival and link interference, which is

computed by ()(
1024

)(ccEloadE
ij

ij
×), where we divide the total

Fig. 3. Pseudo-code for link weight computation algorithm
(LWCA).

Algorithm for LWCA:

1. initialize all as 0;
2. for (∀ Si-Di pairs)
3. compute Pcandidate (Si, Di) using Dijkstra algorithm;
4. end for
5. count the appearance of Eij along all Pcandidate (Si, Di) and
6. set the number of appearance of Eij to Eij (cc);
7. compute Eij (load) for ∀ E;
8. for (∀ Eij)
9. compute Eij (w) taking into account Eij (load), Eij (s),
10.
11. end for

Eij (d) with following the rule of (3)

load expressed in Mbps at Eij by 1024 strands for kbps and
multiply the link critical cost. The other is the delay, which is
computed as (Eij(d)×1,000), where 1,000 is a random large
number that distinguishes the delay from the traffic arrival and
link interference.

For example, the link weight in terms of the traffic load and
link interference at Ebc in Table 1 can be 0.205
(Ebc(load)=105/1024×(Ebc(cc)=2)), and the link weight in
terms of the delay at Ebc can be 1000 (=(Ebc(d)=1)×1,000)
because the delay at Ebc(d) is one. Therefore, the Ebc(w) can be
1000.205 (=0.205+1,000).

We maintain the computed link weight information together
with the network topology in the traffic-engineered database
described in Fig. 1. We assume that Tload(i,j) is changed once
every two or three months, that is to say, it shows a nearly static
nature in terms of an on-line routing algorithm. In addition, the
value of Eij(cc) is not changed if there is no change in the

738 Daniel W. Hong et al. ETRI Journal, Volume 27, Number 6, December 2005

network topology that subsequently affects the change in
Pcandidate(Si,Di). Therefore, we need to compute the link weight
(Eij(w)) only in the case of a network topology change, which is
one of the major differences from the others [3], [10]-[13], [20],
and [21].

In the case of MIRA [10], it needs to identify the critical link
to minimize the interference during every LSP setup request,
whereas our scheme does not. Therefore, our scheme can
greatly enhance the route computation time, which will be
proven with the performance evaluation in section V.

2. An Algorithm for Optimal Route Selection

After computing the link weight for all links
(∀Eij(w)∈G(N,E)), we need to find an optimal route to setup
the MPLS LSP that conforms to multiple QoS metrics such
as bandwidth, end-to-end delay, and hop count. In this
section, we propose an algorithm to provide the optimal
route with multiple metrics based on the predetermined link
weight. The optimal route selection procedure is composed
of two steps:

Step 1. Trim the unfavorable links or nodes and assign appropriate
orders to each node and link that will be used to find the
optimal route in the next step.

Step 2. Select the optimal route that meets the multiple QoS
parameters such as bandwidth and end-to-end delay.

We define the LSP setup request as P(Rb,Rd,S,D), where Rb is
the requested bandwidth, Rd is the requested end-to-end delay,
S is the ingress node, and D is the egress node. For the first step
of our route provision procedure, we would like to describe the
method for assigning orders to each node and link along the
weighted network graph that was composed by the LWCA.
The order assignment procedure is composed of two steps: the
first is trimming the unfavorable links (Eij(w)==∞ or Eij(ava)<
Rb) from the weighted network graph G(N,Ew), and the second
is assigning appropriate orders to each node (N(o)) and edge
(E(o)) using the following algorithm, which is called the
bounded order assignment algorithm (BOAA).

BOAA is designed to minimize the complexity of order
assignment by limiting the traversing of the network topology
when the accumulated delay is exceeded by the requested
delay bound (Rd). Intrinsically, the end-to-end delay metric is a
sort of path metric, which means that we can determine the
end-to-end delay after creating the route between an ingress
node and an egress node. However, our approach can
determine the violation possibility of the end-to-end delay at
the stage of traversing the network topology instead of the
completion of route computation.

Figure 4 shows the pseudo-code for BOAA. In the order

Fig. 4. Pseudo-code for BOAA.

Algorithm for BOAA

1. for all N(v, o) ← (no, ∞);
2. for all E(o) ← ∞;
3. Nactive ← P(D) and Ndest ← P (S);
4. Nactive (v, o) ← (yes, 0);
5. Hfactor ← 1,000,000 and Dfactor ←1,000;

6. Procedure BOAA (Nactive, Ndest)
7. if(Quotiant(Nactive)(o)/Dfactor)≥Rd && Nactive≠Ndest)
8. Nactive(v) ← yes and return;
9. if(Nactive = = Ndest) return;
10. Nactive (v) ← yes;
11. for each E connected to Nactive do
12. Npassive ← Eadj;
13. if(E(w) = = ∞)
14. E(v,o) ← (yes,∞);
15. else if (E(o)> (Nactive(o) + Hfactor))
16. E(v,o) ← (yes, Nactive(o)+Hfactor);
17. if(Npassive (o)> E(o)) {
18. Npassive(o) ← E(o);
19. BOAA(Npassive, Ndest);
20. }
21. end of for
22. end of Procedure

assignment to the node and link, the node has two attributes of
order and visiting flag (N(o,v)), where N(o) is the order and
N(v) indicates whether N was visited or not. On the other hand,
each link maintains three attributes E(w,d,o), where E(w) is the
link weight assigned by LWCA, E(d) is the delay at the link,
and E(o) is the order. In order to assign the order while taking
into account the shortest path constraint, we also define one
hop as a random large number of 1,000,000 (Hfactor=1,000,000),
which is multiplied by a random number taking into account
the delay (Dfactor=1,000) as described in LWCA by 1,000 (=
1,000 (for delay) × 1,000 (for hop count)).

BOAA determines the orders of each node and link, taking
into account the combination of the link weight assigned by
LWCA and hop count. However, we do not care about the
available bandwidth in the order assignment process.

There are two kinds of nodes: one is the active node (Nactive),
and the other is the passive node (Npassive). Node Nactive
represents the active node that allocates the proper weights to
all of the neighboring nodes and links connected to it. Node
Npassive represents the passive node order that is assigned by an
active node, that is to say, Npassive is a neighboring node of
Nactive.

Figure 5 shows the weighted network graph that was created
by LWCA, as described in the previous section. In order to
assign the appropriate order to the node and link, we need

ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al. 739

Fig. 5. An example of the weighted network graph created by
LWCA.

m

f

d

g

e

a b c

h k l

Eab(2000.098) Ebc(1000.205) Ecd(1000.098)

Eeb(1000.005)

Eeh(2000.005)

Ecf(2000.005)

Elf(1000.005)

Egh(1000.005) Ehk(1000.020) Ekl(2000.020) Elm(1000.005)

Eij(x), where x = the link weight computed by LWCA

LSPrequest=P(S, D, b, d)=P(e, f, 10 Mbps, 8 ms), where S is ingress node,
D is egress node, b is requested bandwidth, and d is LSP end-to-end
delay

Fig. 6. The order assigned network graph by BOAA with the
weighted network graph shown in Fig. 5.

a b c d

e f

g h k l m

b[3005000.308] b[2003000.210] c[1002000.005] d[1002000.005]

Eab(2000098)
Eab

[3005000.308]

Ebc(1000205)
Ebc

[2003000.210]

Ecd(1000098)
Ecd

[2003000.103]

e[3004000.215]

Eeb(1000005)
Eeb [3004000.215] Ecf(2000005)

Ecf[1002000.005]

Eeh(2000005)
Eeh [5007000.055]

Elf(1000005)
Elf [1001000.005]

f[0]

e(o)<Eeh(o)

Egh(1000005)

Egh
[4005000.055]

Ehk(1000020)

Ehk
[3004000.050]

Ekl(2000020)

Ekl
[2003000.025]

Elm(1000005)

Elm
[2002000.010]

g[4005000.055] h[3004000.050] k[2003000.025] l[1001000.005] m[2002000.010]

Eij(x), where x=the link weight computed by LWCA
Eij[y], and N[y], where y is the order of link or node
assigned by BOAA

the LSP setup information and weighted network graph as
shown in Fig. 5. Also, Fig. 6 shows the result of order
assignment using BOAA under the weighted network graph
of Fig. 5. In addition, a path setup request is composed of the
ingress node, egress node, requested bandwidth, and end-to-
end delay constraint. In this example, we assume that the
ingress node is e, the egress node is f, the requested
bandwidth is 10 Mbps, and the end-to-end delay constraint is
10 ms, as shown in Fig. 5.

We traverse the weighted network graph from the egress
node (P(D)) to ingress node (P(S)). Therefore, the first Nactive
can be (P(D)) as shown in line 3 in Fig. 4. Initially, we assign
(yes,0) to Nactive(v,o), and we set Hfactor to 1,000,000 and Dfactor to
1,000. Henceforth, we traverse the weighted network graph
until all nodes are traversed (∀N(v)==yes). When a node is
Nactive, the adjacent node connected to the Nactive with an edge
(E) can be Npassive.

We determine the order of link (E(o)) connected to the Nactive
using the following rule:









∞==∞
+>∞≠+
+≤∞≠

=
);)(if(,

));)()(and)(if(,)(
));)()(and)(if(),(

)(
wE

HoNoEwEHoN
HoNoEwEoE

oE factoractivefactoractive

factoractive

(
(

 (3)

The order of the link to which (E(o)) is connected is
determined by the order of Nactive(Nactive(o)) and the weight of
the link (E(w)). If the weight of the link (E(w)) connected to
Nactive is infinite (∞), E(o) can be ∞ regardless of the order of
Nactive(o). If E(w) is not infinite and E(o) is less than or equal to
Nactive(o) plus one, E(o) will not be changed. However, if E(w)
is not infinite and E(o) is greater than Nactive(o) plus one, E(o)
will be replaced with the value of Nactive(o) plus one.

On the other hand, we need to determine the order of each
node (N(o)). If the visiting flag of Npassive(v) is yes, then we
traverse another link that is not yet traversed. If Npassive(v) is no,
we assign the order of Npassive using the following rule:



 >

=
.otherwise),(

));()(if(),(
)(

oN
oEoNoE

oN
passive

passive
passive (4)

The rule for assigning orders to the passive node is simpler
than the order assignment for each link. If the order of passive
node (Npassive(o)) connected with a link is greater than that of the
link (E(o)), Npassive(o) is replaced with E(o). If Npassive(o) is less
than or equal to E(o), we do not change Npassive(o). For example,
if node h is an active node, the order of passive node e(o) is
determined by the value of Eeh(o) in Fig. 6. Because e(o) is less
than Eeh(o), e(o) is not changed.

When we traverse the network graph to assign orders to both
the node and link, we evaluate the feasibility of the active node
(Nactive(f) and whether it violates the constraint of the end-to-
end delay at each Nactive using the following rule:















 ≥
=

.otherwise,

;))((if,
)(

feasible

R
D

oNQuotiantunfeasible
fN

d
factor

active

active (5)

If Nactive(f) is not feasible, then we do not traverse its branch
any more, which results in a better performance in optimal route
selection conforming to the end-to-end delay requirement (Rd).

On finishing the order assignment for all the nodes and links,
we select the most optimal route that conforms to the multiple
constraints of bandwidth and delay with the order assigned
network graph. In the process of route selection, we adjust the
available bandwidth of each link along the selected path.

We traverse the order assigned network graph from the
ingress node until we reach the egress node by reducing the
available bandwidth of the selected link (Eij(ava)-Rb).

Starting from the ingress node, we select a link that meets the

740 Daniel W. Hong et al. ETRI Journal, Volume 27, Number 6, December 2005

following rule until the egress node is reached:

∑
=










































n

i
factor

factor

i

D
H

oE

1

)(modmodmin , (6)

where n is the number of links connected to a node.
For example, in the case of ingress node e, there are two

candidate links of Eeb[3004000.215] and Eeh[5007000.055], as
shown in Fig. 6. If we apply (5) to these two links, Eeh has less
residual value than Eeb. Therefore, we select Eeh as an optimal
link in terms of node e. Upon selecting an optimal link, we
change the available bandwidth of the selected link using the
equation Eij(ava)=Eij(ava)-Rb, where Rb is the requested
bandwidth.

If there are two or more links that have the same value after
applying the equation in terms of any node, we select the
minimum hop route by applying the following rule:

 ,)(min
1

∑
=
















n

i factor

i

H
oEQuotiant (7)

where n is the number of links having the same value that is
computed by (6).

If there are two or more links that meet the requested end-to-
end delay bound, we select the route with the minimum hop
count because the longer hop route consumes more bandwidth
than the shorter hop route.

However, if there are two or more links that have the same
hop count and the same values derived by (6) and (7), then we
select the link that meets the following rule:

)(mod

min
1

∑
=












































n

i factor

factor

i

D
H

oE
Quotiant , (8)

where n is the number of links having the same values that
were computed by (6) and (7).

Therefore, if there are two or more links that have the same
hop count and the same values derived by (6) and (7), then we
select the link that has the least end-to-end delay.

As a result of applying the rules provided above, the selected
route between ingress node e and egress node f that meets the
requested bandwidth of 10 Mbps and the end-to-end delay of
10 ms can be <e-h-k-l-f> under the sample network topology
of Fig. 6.

The main disadvantages of MIRA are its computation
complexity and lack of consideration for the total traffic load

offered to the network. The route selected by MIRA follows
the minimum number of critical links (<e-b-c-f> in the
example in Fig. 2 because the links Ebc, Ehk, and Ekl are critical
links for the (S2,D2) node pair. On the other hand, MIRA
traverses the network topology several times based on every
ingress/egress pair to determine the critical links, which causes
computation complexity.

However, our algorithm is somewhat different from MIRA
in terms of two aspects. Our algorithm is a scalable critical link
identification scheme that is a table-driven approach to reduce
the computation complexity, which we need to compute all
possible paths (Pcandidate(Si,Di)) among the candidate ingress and

egress pairs (∑
=

n

i
ii DS

1
),() only when the network topology is

changed. However, MIRA’s approach computes and identifies
the critical link every time a new LSP setup request arrives.

Another difference is that MIRA does not take into account
the unbalanced future traffic loads between every ingress and
egress pairs, but our algorithm does. For example, let us
assume that the critical links under the network topology in Fig.
2 are Ebc, Ehk, and Ekl and that the ingress node is e and the
egress node is f. In MIRA’s case, it selects the route that has the
least number of critical links. Therefore, MIRA selects route
<e-b-c-f> as the optimal one. On the other hand, our algorithm
selects the route that has the least weight, reflecting four
additional aspects such as unbalanced future traffic load,
critical link, and end-to-end delay. Of course, our algorithm and
MIRA both take into account the requested bandwidth.
Therefore, under the same network topology, our algorithm
will select route <e-h-k-i-f> as the optimal one.

IV. Performance Discussion

In this section, we discuss the various performance issues of
the proposed M_CSPF algorithm in comparison with the other
existing algorithms described in section III.

1. Network Topologies

In terms of network topology, as the number of links and
nodes increases, more alternative routes become available for
selection. Therefore, the accommodation capacity of LSP
becomes higher in general, but the complexity of finding the
feasible route will be increased in proportion to the number of
increased links or nodes. In addition, the equipment and
operating costs of the network grow as the number of links and
nodes increase, so a topology with a small number of links and
nodes is desirable for network service providers [22], [23].

In this paper, we consider three different network topologies:
tree network, ring network, and star network topologies, which

ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al. 741

Fig. 7. The network topologies for verifying the existing CBR
algorithms and our M_CSPF algorithm.

(a) Flat tree topology (b) Hierarchical ring topology (c) Torus topology

are shown in Fig. 7. In order to strictly verify the CBR
algorithms, including our M_CSPF, we selected some complex
network topologies.

The characteristics of the network topology should depend
on the number of available routes for each pair of
ingress/egress nodes. As the number of links increases, more
alternative routes become available for selection. So, the
accommodation capacity of LSP becomes higher in general.
However, the equipment needs and operating cost of the
network grow as the number of links increases, so a network
topology with a small number of links is desirable for network
service providers [23].

In this paper, we evaluate the proposed algorithm under three
generic network topologies: flat tree, hierarchical ring, and
torus topologies. The flat tree topology is a network with
additional links from lower layers to higher layers. The
hierarchical ring topology is a network that connects rings
hierarchically. On the other hand, the torus topology is a grid
network whose edge nodes are linked.

2. Performance Discussion

The main purposes of MPLS traffic engineering are to
improve and control the end-to-end quality and enhance the
efficiency of network resource utilization. Therefore, the
evaluation of MPLS traffic engineering schemes should
consider these two viewpoints. To evaluate the proposed
algorithm and compare it with the others, we evaluated the
random LSP accommodation of symmetric topologies using
practical algorithms for MPLS traffic engineering, either
actually installed by some vendors or ones that can be installed
easily.

In order to evaluate the performance in terms of efficiency of
network resource utilization and end-to-end quality, we defined
some simulation parameters, which are shown in Table 2.

A. Efficiency of Network Resource Utilization

In order to evaluate the efficiency of network resource
utilization of various algorithms, including our algorithm, we
use the following criterion, which gives the capacity of the

Table 2. Simulation parameters.

Parameter Value

Bandwidth of each link 500 Mbps

Propagation delay of each link Discrete value, 2, 3, and 6 (ms)

Bandwidth required by LSPs
Discrete value, 1, 10, and 50
(Mbps)

End-to-end delay required by
LSPs Discrete value, 8 and 10 (ms)

Max queue length of each LSR 16,348 (packets)

network:

 .
LSPs ofnumber total

LSPs daccomodate ofnumber the
capacityNetwork









=
 (9)

We tried to create 500 LSPs between the random ingress and
egress pairs with random discrete bandwidth for all algorithms
and random discrete end-to-end delay constraint for our
algorithm only. In this experiment, we did not consider the total
traffic load, which will be discussed in a later section. We only
measured the number of accommodated LSPs of each
algorithm in this section.

Table 3 shows the comparison of the characteristics and
average accommodation ratio of each algorithm under the three
different network topologies. Our algorithm showed the best
accommodation ratio over WSP, SWP, SDP, and MIRA.

In the case of well-known CSPF algorithms such as WSP,
SWP and SDP, they showed a lower accommodation ratio than
MIRA and our algorithm because they did not support the
concept of a critical link. However, MIRA and our algorithm,
which both support the concept of a critical link for future
interference, showed a more enhanced accommodation ratio
compared to WSP, SWP and SDP because they can minimize
future interference, supporting the critical link concept that was
originally proposed by MIRA and modified by our algorithm.

Each algorithm showed different accommodation ratios
according to the network topologies, namely, flat tree,
hierarchical ring, and torus topologies. All algorithms showed
the best accommodation ratio under the torus topology and
showed the worst accommodation ratio under the hierarchical
ring topology, as shown in Fig. 8 and Table 2.

MIRA and M_CSPF showed nearly the same
accommodation ratio, but MIRA did not support the end-to-
end delay constraint and total offered traffic load. Because our
algorithm, M_CSPF, supports the concept of total offered
traffic load, it showed a slightly enhanced performance (1 to
1.5%) compared to MIRA under the three different network

742 Daniel W. Hong et al. ETRI Journal, Volume 27, Number 6, December 2005

Table 3. Comparison of the characteristics and average accommodation ratio of each algorithm under the three different network topologies.

Characteristics Average accommodation ratio
Algorithms Bandwidth

guarantee
Delay

guarantee
Critical

interference
Total offered
traffic load Flat tree

Hierarchical
ring Torus

WSP yes no no no 62% 43% 68%

SWP yes no no no 60% 39% 68%

SDP yes no no no 66% 41% 79%

MIRA yes no yes no 86% 63% 87%

M_CSPF yes yes yes yes 87% 63% 91%

Fig. 8. Comparison of the number of accommodated LSPs under
the three different network topologies.

WSP
SWP

SDP
MIRA

M_CSPF

Hierarchical ring

 Flat tree

 Torus

0
50

100
150

200
250

300
350

400

450

topologies. In addition, our algorithm can provide the LSP that
meets the end-to-end delay constraints, which are not
supported by MIRA.

B. End-to-End Quality

In order to evaluate the performance of routing algorithms, E.
Crawley [24] used the throughput value by statistical
multiplexing. However, in this model, each LSP reserves links
using the maximum transfer rate, so hardly any throughput
deterioration appears. Instead of E. Crawley’s [24] approach, we
used the one-way delay and packet loss rate, which are affected
by quality deterioration earlier than the throughput, as the
evaluation criterion of the end-to-end delay [21]-[26]. The delay
can be defined as the sum of the delays at each link along the
LSP’s route, and the packet loss arises in each link independently.

Figure 9 shows the one-way delays and path computation
complexity for all algorithms under the hierarchical ring

Fig. 9. Comparison of end-to-end delay and path computation
complexity under the hierarchical ring topology.

0

100

200

300

400

500

600

700

800

900

50 100 150 200 250 300 350 400 450 500

D
el

ay
 (m

s)

Number of LSPs

(a) End-to-end delay comparison

WSP

SWP

SDP
MIRA

M_CSPF

(b) Average complexity of path computation

0

50

100

150

200

250

50 100 150 200 250 300

Number of Nodes

Av
er

ag
e

co
m

pl
ex

ity
 o

f p
at

h
co

m
pu

ta
tio

n
(m

s)

WSP
SWP
SDP
M_CSPF
MIRA

topology. In terms of end-to-end delay, the hierarchical ring
topology showed the worst LSP accommodation ratio
compared to the two other topologies, which are flat ring and

ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al. 743

torus. However, the same tendencies were found for the other
topologies.

Because all the algorithms, with the exception of the
algorithm proposed in this paper, did not support the end-to-
end delay constraint, we measured the delay under the created
LSPs without end-to-end delay constraint. However, in the
case of our algorithm, we measured the delay with an end-to-
end delay constraint of 6 ms.

As shown in Fig. 9, our algorithm showed the best
performance compared to the others in terms of end-to-end
delay and path computation complexity under the hierarchical
ring topology. Because our algorithm can create an LSP with
the end-to-end constraint under the weighted network graph
while taking into account the total offered traffic load, which is
impossible in the others, our algorithm showed the best
performance in terms of end-to-end delay, including a
performance enhancement of approximately 7% compared to
MIRA. However, MIRA and our algorithm showed some
greater performance degradation than WSP, SWP, and SDP.
Because WSP, SWP, and SDP consider only the bandwidth
constraint, they showed good performances compared to

Fig. 10. LSP rejection probability versus the average offered load
of the network in Fig. 3.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Traffic load (Number of LSPs/s)

R
ej

ec
tio

n
pr

ob
ab

ili
ty

MIRA
M_CSPF

Fig. 11. Network topology with a large number of critical links.

a d

c

b eS1

S2 D1

D2

Ead

Eac Ecd

Eab

Ebc

Ebe

Ece

Ede

∀Eij(ava, d)=(150 Mbps,1ms)

MIRA and our algorithm.
Next, we describe the performance comparison between

MIRA and our algorithm, M_CSPF, under a network topology
with unbalanced offered load and a network topology with a
large number of critical links.

At first, we measured their performances under a network
topology with unbalanced offered load, as shown in Fig. 2.
There are three ingress and egress pairs, which are (S1,D1),
(S2,D2), and (S3,D3). Each pair of ingress and egress has
different offered traffic loads. We assumed that the traffic load
(S1,D1) is five times higher than (S2,D2) and (S3,D3). In addition,
the offered traffic loads at (S2,D2) and (S3,D3) are the same.

Our algorithm showed a performance enhancement of
approximately 22% compared to MIRA. The difference was
caused by the method of controlling the traffic load. In the case
of MIRA, it considers the critical link and not the future traffic
load, which limits the possible candidate routes between any
ingress and egress pair. However, our algorithm simultaneously
deals with the future traffic load and the critical link, which can
maximize the accommodation probability.

In addition, we measured the performance of rejection
probability by gradually increasing the offered traffic load
under the bi-directional network topology with a large number
of critical links, as shown in Fig. 11. We assumed that the
available capacity and delay of all links are 150 Mbps and 1 ms,
respectively. We also assumed that balanced traffic was offered
at each ingress nodes of S1 and S2.

In the case of MIRA and M_CSPF, there are six critical links
(Eab, Ebc, Ebe, Ead, Ecd, and Ede) for an LSP setup between the
ingress/egress pair (S1,D1), and there are six critical links (Eab,
Ebc, Ead, Ead, Ebe, and Ede) for an LSP setup between the
ingress/egress pair (S2,D2). This means that, in the case of
MIRA, the possible route between the (S1,D1) pair can be <a-c-
e> and the possible route between the (S2,D2) pair can be <b-c-
d>. Thus, the critical disadvantage of MIRA is that the rejection
probability is much higher than in our algorithm (M_CSPF)
because MIRA does not take the traffic load into account, only
the number of critical links. However, our algorithm showed a
more balanced rejection probability compared to MIRA
because it simultaneously takes into account the offered traffic
load and the number of critical links.

In addition, we should evaluate the performance of our
algorithm in the case of network topology change. As
described in the previous section, our algorithm computes the
link weight using the LWCA only when there are changes in
the network topology and total traffic load. We also described
how our algorithm can enhance the path computation
performance because it can limit the graph search when the
accumulated link delay exceeds the requested end-to-end delay
constraint.

744 Daniel W. Hong et al. ETRI Journal, Volume 27, Number 6, December 2005

In order to evaluate the performance of our algorithm under
the situation of network topology change and variant end-to-end
delay constraint with the torus network topology, as shown in Fig.
7 (c), we measured the path computation performances of our
algorithm and MIRA by gradually expanding the network
topology and simultaneously increasing the end-to-end delay
constraint. At each step, we added four nodes to the existing
torus network topology, as shown in Fig. 7 (c), and increased the
end-to-end delay by 0.1 ms starting from 0.5 to 1.5 ms.

As shown in Fig. 13, our algorithm showed the best LSP
computation performance in cases where the network topology
is not changed. However, both MIRA and our algorithm showed
nearly the same LSP computation performance in cases where
the network topology is changed. However, in a real network

Fig. 12. Comparison of rejection probability under the large
number of critical links.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

50 100 150 200 250 300 350 400 450 500

Offered load (created LSPs/s)

R
ej

ec
tio

n
pr

ob
ab

ili
ty

MIRA

M_CSPF

Fig. 13. LSP computation performance according to network
topology change and gradual increment of end-to-end
delay constraint.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Delay constraint (LSP(d))

LS
P

se
tu

p
tim

e
(m

s)

MIRA

M_CSPF with TC
M_CSPF without TC

TC: Traffic load

environment, the network topology is not as frequently changed
as in the simulated condition. Therefore, our algorithm showed
the same LSP computation performance as MIRA under the
worst case of frequent network topology change. However, our
algorithm showed a greatly enhanced LSP computation
performance when the network topology is not changed.

On the other hand, because MIRA does not support the end-
to-end delay constraint, it showed a nearly linear increase in
LSP computation time regardless of the end-to-end delay
bound. However, our algorithm showed a more enhanced
performance than MIRA even in the case of network topology
change because it does not traverse the network topology any
more when the accumulated delay at any link exceeds the end-
to-end delay constraint. However, MIRA traverses all the
network topology to compute the network topology because it
basically uses the Dijkstra algorithm to compute the LSP route.

On the other hand, bandwidth utilization can be defined as
the aggregate of all traffic currently being consumed on a hop
or path. We measured the bandwidth utilization under the three
different network topologies of flat tree, hierarchical ring, and
torus. As a result of our evaluation, M_CSPF showed high
bandwidth utilization of an average of 98% because it takes
into account bandwidth, future traffic arrival, and link
interference. However, the bandwidth utilizations of WSP,
SWP, SDP, and MIRA were less than that of our algorithm.

Therefore, our algorithm is suitable for the complex network
topology with bounded end-to-end delay constraint. Since the
value of the bounded delay constraint is small, the LSP path
computation performance will be more enhanced compared to
MIRA because the bounded delay constraint takes the effect of
network topology pruning.

As a result of the performance evaluation, our algorithm
showed the best performance, with the exception of the path
computation complexity, among all the others while conforming
to the optimal path provision meeting multiple constraints such
as bandwidth and end-to-end delay. Our algorithm showed a
lower LSP setup rejection probability than WSP, SWP, DSP, and
MIRA because our algorithm simultaneously takes into account
the total offered traffic load and the link interference. In addition,
by introducing the bounded order assignment concept, we can
also enhance the LSP route computation performance when the
network topology is changed, showing a slight enhancement in
performance compared to MIRA in the case of a network
topology change. Also, our algorithm showed a more enhanced
LSP computation performance by reducing the value of the end-
to-end delay constraint.

V. Conclusion

Because the major objective of MPLS traffic engineering is

ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al. 745

the enhancement of network resource utilization efficiency and
end-to-end quality, we measured the efficiency of network
resource utilization and end-to-end quality of the proposed
algorithm and other algorithms such as WSP, SWP, SDP, and
MIRA under three different network topologies: flat tree,
hierarchical ring, and torus. In addition, we also measured the
LSP setup rejection probability of our algorithm and MIRA
under an unbalanced topology and a balanced network
topology with a large number of critical links. We also
compared the LSP computation performance of our algorithm
and MIRA by gradually adding four nodes and by increasing
the value of the end-to-end delay constraint under the torus
network topology.

By separating the link weight computation step from the LSP
route provision, we can achieve the enhanced performance
LSP route provision for MPLS traffic engineering. Our
algorithm showed the best performance compared to WSP,
SDP, SWP, and MIRA under the flat tree, hierarchical ring, and
torus network topologies. In terms of efficiency of network
resource utilization, we found that our algorithm showed a 2%
enhancement in LSP accommodation ratio compared to MIRA.
In terms of the end-to-end quality, our algorithm showed a
performance enhancement of approximately 7% compared to
MIRA in the case of end-to-end delay.

In addition, the performance comparison of LSP rejection
probabilities under the network topology, where the
unbalanced total traffic load arrives at every ingress nodes,
showed that the rejection probability of our algorithm was less
than MIRA’s by approximately 20%.

In terms of LSP computation performance, our algorithm
also showed a better performance than MIRA in cases where
the network topology was not changed, while our algorithm
revealed that its LSP computation performance in the case of
network topology change is slightly more enhanced than
MIRA’s because our algorithm has the bounded order
assignment. By pruning some parts of the network topology in
the process of traversing the network topology, our algorithm
enhanced its LSP route computation performance better than
MIRA. We also found that our algorithm showed a good LSP
route computation performance by minimizing the value of the
end-to-end constraint because the portion of the pruned
network topology will be widened by minimizing the value of
the end-to-end constraints.

Thus, our algorithm is suitable for providing the optimal
LSP route computation with the bandwidth and delay
constraints under a complex network topology. While our
algorithm showed a good performance under every condition
and topology, our algorithm is particularly good for
application in LSP computation where the end-to-end delay
constraint is tight.

 Summary of Notation
G(N,E) Network graph, where N is node and E is link
Bava Available bandwidth
Breq Requested bandwidth
Eij Communication link (edge) connecting LSRi and LSR j

Eij(ava) Available bandwidth on Eij
Eij(F) Feasibility on Eij, which can be YES or NO
Eij(S) Status on Eij, which can be normal, fault, congestion or

performance degradation
Eij(w) Weight assigned to Eij, which is determined by LWCA
Eij(load) Future traffic load on Eij
Eij(cc) The number appearance of Eij as the critical link
Eij(d) Delay on Eij
Si A source LSRi to create LSP
Di An destination LSRi to create LSP
Tload(Si) Anticipating traffic load that will be injected at the

ingress LSR, Si
Pcandidate(Si,Di) All the possible routes between source LSR, Si and

destination LSR, Di
N(o) Order assigned to node
E(o) Order assigned to edge
Nactive Active node
Npassive Neighbor node that is connected to active node via

edge
G(N,Ew) Weighted network graph that is created by LWCA
Ndest Destination node
P(Rb,Rd,S,D) Path creation requirement, where Rb is requested

bandwidth, Rd is requested end-to-end delay, S is
source node and D is destination node

Hfactor A random large number, which is multiplied by a
random number taking into account the delay

Nactive(o) Order of active node, Nactive
Npassive(o) Order of passive node, Npassive
Nactive(f) Feasibility of active node, Nactive , which can be YES or

NO
Npassive(f) Feasibility of passive node, Npassive, which can be YES

or NO

References

[1] D. Awduche, J. Malcolm, J. Agogbua, and M. O'Dell, Requirements
for Traffic Engineering Over MPLS, RFC 2702, Sept. 1999.

[2] R. Guerin, Ariel Orda, and D. Williams, “QoS Routing Mechanisms
and OSPF Extension,” Proc. of 2nd Global Internet Miniconference
(Joint with Globecom’97), Nov. 1997.

[3] B. Davie and Y. Rekhter, “MPLS Technology and Applications,”
Morgan Kaufmann Publishers, 2000.

[4] R. Guerin, A. Orda, and D. Williams, “QoS Routing Mechanism
and OSPF Extensions,” Proc. of IEEE GLOBECOM’97, Nov.
1997.

[5] P. Aukia, M. Kodianlam, P.V. Koppol, T.V. Lakeshman, H. Sarin,
and B. Suter “RATES: A Server for MPLS Traffic Engineering,”
IEEE Network, vol. 14. no. 2, Mar.-Apr. 2000.

[6] Int’l Eng. Consortium, A Comparison of Multiprotocol Label
Switching (MPLS) Traffic-Engineering Initiatives,
http://www.iec.org/online/tutorials/, Web ProForum Tutorials, 2003.

[7] Nortel Network, “Using Constraint-Based Routing to Deliver New
Services,” http://www.nortelnetworks.com/products/library/collateral/
55046.25-10-99.pdf.

[8] Q. Ma and P. Steenkiste, “On Path Selection for Traffic with

746 Daniel W. Hong et al. ETRI Journal, Volume 27, Number 6, December 2005

Bandwidth Guarantees,” Proc. of IEEE Int’l Conf. on Network
Protocol, Oct. 1997.

[9] Q. Ma and P. Steenkiste, “On Path Selection for tra.c with
Bandwidth Guarantees,” Proc. of IEEE ICNP, 1997, pp. 191-202.

[10] M. Kodialam and T.V. Lakshman, “Minimum Interference Routing
with Applications to MPLS Traffic Engineering,” Proc. of
INFOCOM, Mar. 2000.

[11] Z. Wang and J. Crowcroft, “QoS Routing for Supporting
Multimedia Applications,” IEEE JSAC, vol. 14, no. 7, 1996, pp.
1228-1234.

[12] P.S. Qingming Ma, “On Path Selection for Traffic with Bandwidth
Gurantees,” Proc. of IEEE Int’l Conf. on Network Protocols, Oct.
1997, pp. 191-202.

[13] Yufei Wang and Zheng Wang, “Explicit Routing Algorithms for
Internet Traffic Engineering,” Computer Commun. and Networks,
1999, pp. 582-588.

[14] E. Crawley, R. Nair, and H. Sandick, “A Framework for QoS-based
Routing in the Internet,” IETF RFC2386, Aug. 1998.

[15] Z. Wang and J. Crowcroft, “Quality of Service Routing for
Supporting Multimedia Applications,” IEEE J. on Selected Areas in
Comm., vol. 14, no. 7, Sept. 1996, pp. 1228-1234.

[16] R. Boutaba, W. Szeto, and Y. Iraqi, “DORA: Efficient Routing
Algorithm for MPLS Traffic Engineering,” Int’l J. of Network and
Systems Management, Special Issue on Traffic Eng. and
Management, vol. 10, no. 3, 2002, pp. 311-327.

[17] Woo-Seop Rhee, Jun-Hwa Lee, Jea-Hoon Yu, and Sang-Ha Kim,
“Scalable Quasi-Dynamic-Provisioning-Based Admission Control
Mechanism in Differentiated Service Networks,” ETRI J., vol. 26,
no. 1, Feb. 2004, pp. 27-37.

[18] Hun-Jeong Kang, Myung-Sup Kim, and James W. Hong,
“Streaming Media and Multimedia Conferencing Traffic Analysis
Using Payload Examination,” ETRI J., vol. 26, no. 3, June 2004, pp.
203-217.

[19] X. Xiao and L.Ni, “Internet QoS: A Big Picture,” IEEE Network, vol.
13, no. 2 , Mar.-Apr. 1999, pp. 8-18.

[20] Y. Wang and Z. Wang, “Explicit Routing Algorithms for Internet
Traffic Engineering,” Proc. of IEEE ICCCN99, Oct. 11-13, 1999.

[21] K. Kompella and D.O. Awduche, “Notes on Path Computation in
Constraint-Based Routing,” Internet-Draft, July 1999.

[22] L.L.H. Andrew and A.A.N.A. Kusuma, “Generalised Analysis of a
QoS-Aware Routing Algorithm,” Proc. of IEEE Globecom’98,
1998, pp. 118-123.

[23] Satoshi Kamei and Takumi Kimura, “Evaluation of Routing
Algorithms and Network Topologies for MPLS Traffic
Engineering,” Proc. of IEEE GLOBECOM 2001, no. 1, Nov 2001,
pp. 25-29.

[24] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, A Framework
for QoS-Based Routing in the Internet, RFC 2386, Aug. 1998.

[25] G.R. Ash, Traffic Engineering & QoS Methods for IP-, ATM-, &
TDM-Based Multiservice Networks, Internet-Draft, July 2000.

[26] X. Xiao, A. Hanan, and B. Bailey, “Traffic Engineering with MPLS
in the Internet,” IEEE Network, vol. 14, no. 2, Mar.-Apr. 2000.

Daniel W. Hong received the BS, MS degrees
in computer science from Hannam University,
Konkuk University, and PhD in computer
engineering from Kyung Hee University, Korea,
in 1987, 1989, and 2005 respectively. In 1993
he joined Korea Telecom (KT), where he
worked on a TINA-C related Service and

Network Management Project as a Member of Technical Staff. For the
last few years, he has been working on various research and system
design and development projects in KT. Beginning in 1996, he helped
develop an ATM network management system for 5 years. Since 2002,
he has been involved in the project of the design and implementation of
KT New Operations Support System (NeOSS) as a Director. His
research interests include MPLS/GMPLS traffic engineering, flow-
through service provisioning architecture in telecommunications
environment, MPLS VPN, active network management, and policy-
based network management. He is a Member of IEEE, IEICE, KNOM,
and Korean Institute of Communication Sciences (KICS).

Choong Seon Hong received the BS and MS
degrees in electronics engineering from Kyung
Hee University, Seoul, Korea, in 1983 and 1985.
In 1988 he joined KT, where he worked on N-
ISDN and Broadband Networks as a Member
of Technical Staff. In September 1993, he joined
Keio University, Japan. He received the PhD

degree at Keio University in March 1997. He worked for the
Telecommunications Network Lab, KT as a Senior Member of
Technical Staff and as the Director of the Networking Research Team
until August 1999. Since September 1999, he has worked as a
Professor of the School of Electronics and Information, Kyung Hee
University. His research interests include network management,
network security, sensor networks, and mobile networking. He is a
Member of IEEE, IEICE, IPSJ, KISS, KIPS, and KICS.

Gil-Haeng Lee is a Principal Member of
Engineering Staff at ETRI, Korea. He received
the BS degree in computer science from
Chonnam National University, Korea, and the
MS and PhD degrees in computer science from
KAIST in 1986 and 1996. His research interests
are in SLA, CNM, NMS, load balancing and

distributed processing, network management, speech recognition, and
real time DBMS.

