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In the context of multi-protocol label switching (MPLS) 
traffic engineering, this paper proposes a scalable constraint-
based shortest path first (CSPF) routing algorithm with 
multiple QoS metrics. This algorithm, called the multiple 
constraint-based shortest path first (M_CSPF) algorithm, 
provides an optimal route for setting up a label switched path 
(LSP) that meets bandwidth and end-to-end delay 
constraints. In order to maximize the LSP accommodation 
probability, we propose a link weight computation algorithm  
to assign the link weight while taking into account the future 
traffic load and link interference and adopting the concept of 
a critical link from the minimum interference routing 
algorithm. In addition, we propose a bounded order 
assignment algorithm (BOAA) that assigns the appropriate 
order to the node and link, taking into account the delay 
constraint and hop count. In particular, BOAA is designed to 
achieve fast LSP route computation by pruning any portion 
of the network topology that exceeds the end-to-end delay 
constraint in the process of traversing the network topology. 
To clarify the M_CSPF and the existing CSPF routing 
algorithms, this paper evaluates them from the perspectives 
of network resource utilization efficiency, end-to-end quality, 
LSP rejection probability, and LSP route computation 
performance under various network topologies and 
conditions. 
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I. Introduction 

Multi-protocol label switching (MPLS) is an Internet 
Engineering Task Force (IETF)-defined protocol that 
overcomes some of the shortcomings of IP-based networks. 
MPLS is meant for service provider core networks or large 
enterprise networks. There are two major benefits of MPLS 
traffic engineering: better total network use efficiency and 
better end-to-end quality for each traffic flow. To achieve 
these objectives, MPLS supports two traffic-engineering 
protocols: resource reservation protocol-traffic engineering 
(RSVP-TE) [1]-[4] and constraint-based label distribution 
protocol (CR-LDP) [1], [3], [5]-[7]. However, these protocols 
can manage only the bandwidth resource, the routing 
protocol is not defined in these protocols. In designing a 
network where traffic engineering is performed, the selection 
of routing algorithms and network topologies is believed to 
exert a great influence on the end-to-end quality and overall 
network resource utilization.  

In the case of constant bit rate (CBR), traffic demands are 
placed dynamically, often on a first-come-first-serve basis. 
Routes are calculated one by one using the appropriate 
algorithm; for example, constraint-based shortest path first 
(CSPF) [8], shortest-distance path (SDP) [3], widest-shortest 
path (WSP) [3], or shortest-widest path (SWP) [9] algorithms 
as individual routes are computed meeting the quality-of-
service (QoS) constraints. 

On the other hand, fine-grained traffic engineering is also 
important. In order to achieve this, we generally consider 
multiple QoS metrics such as bandwidth, delay, jitter, 
administrative weight, and others, although this traffic 
engineering causes the NP-complete problem.  

In addition, the minimum interference routing algorithm 
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(MIRA) proposed in [10] explicitly takes into account the 
location of the ingress and egress routers. The key idea of 
MIRA is to route an incoming connection over the path that 
least interferes with possible future requests. However, this 
complexity of MIRA is too great to apply in a real operational 
environment. Also, it does not consider the future traffic load 
and only meets the bandwidth constraint. 

Thus, this paper proposes a scalable constraint-based shortest 
path first (CSPF) routing scheme, called the multiple CSPF 
(M_CSPF) routing algorithm, with the bandwidth and end-to-
end delay QoS constraints. M_CSPF is designed to support the 
on-line setup of an optimal label switched path (LSP) in an 
MPLS network, taking into account better efficiency in terms 
of network resource utilization and better end-to-end quality. It 
consists of two steps: the first is assigning the appropriate 
weight to the network topology, and the second is finding the 
optimal shortest path.  

In order to assign the appropriate weight to the network 
topology while taking into account the total traffic load and link 
interference, we propose a link weight computation algorithm 
(LWCA) that, for the first time, introduces the future traffic 
load and adopts the concept of a critical link from MIRA [10]. 
Future traffic load can be defined as the anticipating LSP 
requests between arbitrary source and destination pair. In terms 
of network planning, a network service provider adjusts the 
network capacity according to the future traffic estimation, 
which takes a long time. However, in terms of MPLS traffic 
engineering, we should consider maximization of network 
resource utilization under the current network capacity. 
Therefore, we must consider the future traffic arrival or the 
future LSP requests to maximize the LSP accommodation ratio. 
MIRA only takes into account the critical link to identify the 
link interference, but our approach considers both the critical 
link and the future traffic load. By adding the future traffic load 
concept, we can achieve a more enhanced LSP 
accommodation ratio.  

In addition, we propose a bounded order assignment 
algorithm (BOAA) that allocates the proper orders to the node 
and link considering the delay based on the weighted network 
graph created by LWCA. The ordered network graph created 
by BOAA is used to find the optimal LSP route that conforms 
to the bandwidth and end-to-end delay constraints. BOAA is 
designed to enhance the LSP route computation performance 
by pruning some portions of the weighted network graph that 
exceed the requested end-to-end delay constraint in the process 
of the order assignment process.  

Because the major objective of MPLS traffic engineering is 
enhancing the efficiency of network resource utilization and 
end-to-end quality, we measured the efficiency of network 
resource utilization and the end-to-end quality of the proposed 

algorithm and other algorithms, WSP, SWP, SDP, and MIRA, 
under three different network topologies: flat tree, 
hierarchical ring, and torus. In addition, we also measured the 
LSP setup rejection probability of our algorithm and MIRA 
under an unbalanced topology and a balanced network 
topology with a large number of critical links. We also 
compared the LSP computation performance of our 
algorithm and MIRA by gradually adding four nodes and by 
increasing the value of the end-to-end delay constraint under 
the torus network topology. 

This paper is organized as follows: Section II describes the 
existing routing algorithms and QoS constraints. Section III 
describes the M_CSPF composed of two subsequent steps, 
which are weight decision and optimal route selection that 
takes into account the two additive metrics of bandwidth and 
end-to-end delay. Section IV describes the performance 
evaluation results of the existing algorithms and the M_CSPF 
routing algorithm under the target network topologies 
described in section II. Finally, we summarize our work and 
discuss some future research directions. 

II. The Existing Algorithms for MPLS Traffic Engineering 

There are some QoS routing algorithms [4], [11]-[16] that 
define the framework and techniques for QoS routing in the 
Internet, and focus on the selection and maintenance of packet-
forwarding paths capable of meeting specific service class 
objectives [17]. These QoS routing algorithms compute the 
routing table using the parameter of unreserved bandwidth as 
the QoS constraint [18], and each LSP reserves the bandwidth 
exclusively in links through which the LSP passes. These 
routing algorithms accommodate successive LSPs in 
consideration of the unreserved bandwidth. These QoS routing 
algorithms can be installed with easy modification, and they 
are chosen by many. We consider the following CBR 
algorithms for verifying the efficiency and end-to-end quality 
of M_CSPF. CBR algorithms apply the extended interior 
gateway protocol (IGP) parameters to the tree to find a 
suitable path. Normally, the available bandwidth and hop 
count may be used to determine paths using the three 
algorithms discussed below.  

Computing optimal routes subject to two or more constraints 
is an NP-complete problem. Mostly, the algorithms work on 
available bandwidth and hop count for selecting a path 
between a source and a destination. A constraint-based routing 
scheme can choose one of the following as the route for a 
destination with some tradeoffs between resource conservation 
and load balancing.  

•The Widest-shortest path (WSP) [2] selects the shortest 
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feasible path. If there are several feasible paths, the one 
having the largest residual bandwidth is chosen. The WSP is 
an improvement of the min-hop algorithm (MHA), as it 
attempts to load-balance the network traffic. In fact, WSP 
selects a feasible path with minimum hop counts, and if 
there are several such paths, it selects the one with the 
largest residual bandwidth, thus discouraging the use of 
already heavily loaded links. However, WSP still has the 
same drawbacks as MHA since the path selection is 
performed among the shortest feasible paths, which are used 
until saturation before switching to other feasible paths. This 
algorithm applies Dijkstra’s algorithm after line, in which 
the unreserved bandwidth that is less than the demand 
bandwidth of LSP has been trimmed.  

•The Shortest-widest path (SWP) [8] selects the route in 
which the minimum unreserved bandwidth of the links 
along the route is largest among all the routes and whose 
unreserved bandwidth exceeds the required bandwidth of 
the LSP. It selects the path with the largest feasible 
bandwidth. If there are several feasible paths, the one with 
the minimum hop count is selected.  

•The Shortest-distance path (SDP) [3] selects the path with 
the shortest distance. The distance can be defined as the sum 
of the inverse bandwidths of all links along the path. The 
SDP routes an incoming connection along the path that 
reaches the destination node using the minimum number of 
feasible links. The distance for Dijkstra’s method is defined 
as the reciprocal of the unreserved bandwidth of the link. 
Then, this algorithm applies Dijkstra’s method: 

( )∑ =
=

k

j
ijR

1
/1distancemin , where Ri is the bandwidth 

available on link ij. 

The shortest-distance approach favors the shortest paths 
when the network load is heavy and favors the widest paths 
when the network load is moderate. However, this scheme 
does not differentiate between the various classes of traffic, as 
its only measure of cost is the available bandwidth. The widest-
shortest path approach can minimize bandwidth fragmentation. 

On the other hand, MIRA, which is proposed in [10], 
explicitly takes into account the location of the ingress and 
egress routers. The key idea of MIRA is to route an incoming 
connection over a path that least interferes with possible future 
requests.  

Specifically, an incoming connection request between (Si,Ti) 
is routed with the goal of maximizing an objective function, 
which is either the minimum-maximum flow (maxflow) of all 
other ingress-egress pairs or a weighted sum of maxflows, 
where weights STα  assigned to each S-T pair reflect the 
“importance” of the flow.  

In order to achieve an on-line routing algorithm, MIRA 

keeps an updated list of the critical links, that is, the links 
whose use by the incoming call diminishes the maxflow 
between other pairs.  

When a new call has to be routed between the 
source/destination pair Si,Ti, MIRA determines the set LST of 
the critical links for all the source/destination pairs Sj,Tj other 
than Si,Ti. The weight w of each link l is then set according to 
the equation ∑ ∈

=
ST

ST
LlTS

lw
):,(

)( α , and the route that causes 
the minimum interference to other source/destination pairs is 
selected.  

In spite of its more sophisticated functions, MIRA still has 
the following limitations whose effects will be shown in the 
discussion of numerical results:  

•MIRA discourages the use of critical links based only on the 
number of other S-T pairs that could use them, without 
verifying if these S-T pairs actually use these links. 
Evidently, if one of these other S-T pairs introduces a low 
traffic in the network, the criticality of the links that diminish 
its maxflow is far less important than that of S-T pairs that 
produce a large amount of traffic. As a consequence, MIRA 
preserves the use of certain links that remain underutilized, 
thus causing a sub-optimal use of the network. To overcome 
this limitation, maximizing the weighted sum of the 
source/destination maxflows has been proposed. However, 
in [19], the weights are chosen offline and do not adapt to 
changes in the network traffic. Hence, this solution does not 
provide the flexibility required of an on-line routing scheme.  

• In its on-line implementation, MIRA sets the link weights 
almost in a static way according only to their level of 
criticality. In fact, the only event that can cause the re-
distribution of new weights is the saturation of some links, 
which is similar to the min-hop algorithm.  

•While choosing a path for an incoming request, MIRA does 
not take into account how the new call will affect the future 
requests of the same ingress/egress pair (auto-interference).  

III. A Multiple Constraint-Shortest Path First Routing 
Algorithm (M_CSPF) 

In this section, we describe a scaleable CSPF routing 
algorithm that can provide an optimal route that meets the two 
additive metrics of bandwidth and end-to-end delay. We 
assume that we can identify the future traffic arrival between all 
source and destination pairs and that there is one LSP setup 
request at a time. The overall M_CSPF scheme is composed of 
the following three steps: 

Step 1. Timing the unfavorable network topology—we prune the 
links when the available bandwidth (Bava) is less than the 
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requested bandwidth (Breq) and when the number of fault 
occurrences is larger than the designated threshold 
assigned by the network administrator. 

Step 2. Assign appropriate weight to links or nodes—we assign 
the appropriate weight to links or nodes. In this paper, we 
propose an algorithm for the computation of link weight 
that takes high network resource utilization and high 
computation performance into account under the 
estimated future traffic load and current link delay. 

Step 3. Compute the optimal QoS route conforming to the 
bandwidth and end-to-end delay taking into account the 
current network status.  

The QoS constraint parameters of an LSP can be specified in 
terms of minimum guaranteed bandwidth and maximum 
tolerable delay and/or jitter. The main goal of a QoS routing 
technique is to determine the path that can guarantee the 
constraints requested by the incoming packets and reject as few 
LSP requests as possible.  

Let us model a network as a graph, G(N,E), where node N 
represents the label switch router (LSR) or label edge router 
(LER), and edge E represents the communication links, as 
shown in Fig. 1. 
 

Eik(ava, d, s) 

Fig. 1. An MPLS network model for supporting QoS guaranteed
LSP. 
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The traffic enters the network at ingress node Si and exits at 
egress node Di. Each LSP requires a path from Si to Di. Each 
edge Eij has some associated parameters such as available 
bandwidth (Eij(ava)), delay (Eij(d)), and link status (Eij(s)), which 
indicate the fault, congestion, or performance degradation. 

A new LSP can be routed over links with Eij(ava) greater or 
equal to the requested bandwidth (Rb). In addition, the link 
feasibility (Eij(F)) can be defined as 
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where a link can be feasible if the requested bandwidth (Rb) is 
less than or equal to the available bandwidth (Eij(ava)), and the 
link status (Eij(s)) is not in fault, has congestion, or has 
performance degradation. Otherwise, we trim the link 
(Eij(F)==NO) from G(N,E) because it is not feasible. 

1. A Link Weight Computation Algorithm (LWCA) 

Once the network topology has been pruned according to the 
rule of (1), we determine the link weight (Eij(w)). In this section, 
we describe the link weight computation algorithm (LWCA) 
that determines each Eij(w), taking into account the optimal 
LSP provision with bandwidth and delay constraints and the 
future traffic arrival at every possible ingress LSR (∀Si). 

Here, we borrowed the concepts of a critical link from 
MIRA [10] to solve the problem of future traffic arrival. 
However, LWCA is designed to solve the existing limitations 
of MIRA and to enhance the overall performance of optimal 
path computation, taking into account the multiple QoS metrics 
of end-to-end delay and bandwidth. 

Let us consider a uni-directional network topology with 
unbalanced future traffic loads, as shown in Fig. 2. There are 
three ingress/egress pairs having different future traffic loads. In 
this example, we assume that there are heavier future traffic loads 
from ingress S1 to egress D1 than in the others (S2-D2 and S3-D3). 

There is only one possible route <a-b-c-d> between S1 and 
D1. Also, there is only one possible route <g-h-i-j-k> between 
S3 and D3. However, there are two different possible routes of 
<e-b-c-f> and <e-h-i-j-f> between S2 and D2. 

In order to calculate the link critical cost Eij(cc) at Eij, we add 
two parameters to edge (E) of the network model described in 
Fig. 1. One is the total traffic load (Eij(load)), which represents 
the possible traffic loads at Eij to accommodate the anticipated 
traffic load at each ingress LSR. The other parameter is the link 
weight (Eij(w)) parameter, which maintains the link weight that is 
computed with our LWCA, taking various aspects into account.  

In addition, we define two additional parameters for 
computing Eij(w). We define the anticipated traffic load at ingress 
LSR Si as Tload(Si). Referring to Fig. 2, the Tload(S1) is 
 

 

Fig. 2. A uni-directional network topology with unbalanced future 
traffic loads.

S1 a

e

g

b

h

c d

f

ml k 

S2

S3

D1

D2

D3

Eab

Eeb

Eeh

Ebc 

Ehk

Ecd 

Ecf 

Elf 

ElmEkl 

TLOAD=100 Mbps

TLOAD=5 Mbps

TLOAD=5 Mbps

Egh

 



ETRI Journal, Volume 27, Number 6, December 2005 Daniel W. Hong et al.   737 

Table 1. Link weight table taking into account the critical link cost, traffic load, and delay. 

Links 
Attributes 

Eab Ebc Ecd Eeb Ecf Eeh Ejf Egh Ehk Ekl Elm 

Eij (d) (ms) 2 1 1 1 2 2 1 1 1 2 1 

Eij (ava) (Mbps) 500 500 500 500 500 500 500 500 500 500 500 
Pcandidate (S1, D1) 

Tload (S1)=100 Mbps 
           

           Pcandidate (S2, D2) 
Tload (S2)=5 Mbps            
Pcandidate (S3, D3) 

Tload (S3)=5 Mbps 
           

Eij (cc) 1 2 1 1 1 1 1 1 2 2 1 

Eij (load) 100 105 100 5 5 5 5 5 10 10 5 

Eij (w) 2000.098 1000.205 1000.098 1000.005 2000.005 2000.005 1000.005 1000.005 1000.020 2000.020 1000.005

 

 
100 Mbps. We define all the possible candidate routes between Si 
and Di as Pcandidate(Si,Di). For example, the Pcandidate(S2,D2) under 
the network topology shown in Fig. 2 can be <e-b-c-f> and <e-
h-i-j-f>. The pseudo-code for LWCA is described in Fig. 3, and 
the example of link weight computation under the network 
topology in Fig. 2 is shown in Table 1. At first, we initialize the 
link critical cost (Eij(cc)) for ∀Eij as zero. Next, we determine all 
possible routes between all possible ingress and egress pairs 
using the Dijkstra algorithm. In the case of Fig. 2, there are three 
possible ingress/egress pairs (<S1,D1>, <S2,D2>, and 
<S3,D3>). There are four possible routes as shown in Table 1. 

On finding all possible routes between every ingress and 
egress pairs, we determine the link interference by counting the 
number of appearances of each Eij along all the possible routes 
and set the number of appearances of each Eij to Eij(cc). For 
example, in Table 1, Ebc(cc) can be 2 because Ebc appeared 
twice, once for Pcandidate(a,d) and once for Pcandidate(e,f). If Eij(cc) 
is one, it means that there is no interference. The effect of 
interference is proportional to the number of Eij(cc). 

Next, we compute the Eij(load) for each Eij using the 
following equation: 

∑ ∈= )),(   ),(()( iicandidateijiloadij DSPEifSTloadE .   (2) 

As seen in Table 1, Ebc(load) is 105 Mbps, where 100 Mbps 
is for Pcandidate(S1,D1) and 5 Mbps is for Pcandidate(S2,D2). 

With such information as Pcandidate(Si,Di), Eij(cc), Eij(load d), 
Eij(load), and Eij(s), we compute link weight (Eij(w)) according 
to (2). In computing Eij(w), we combine two aspects. The first 
is the future traffic arrival and link interference, which is  

computed by ( )(
1024

 )( ccEloadE
ij

ij
× ), where we divide the total  

 

Fig. 3. Pseudo-code for link weight computation algorithm 
(LWCA). 

Algorithm for LWCA:

1. initialize all as 0;
2. for (∀ Si-Di pairs) 
3. compute Pcandidate (Si, Di) using Dijkstra algorithm; 
4. end for
5. count the appearance of Eij along all Pcandidate (Si, Di) and
6. set the number of appearance of Eij to Eij (cc); 
7. compute Eij (load) for ∀ E; 
8. for (∀ Eij) 
9. compute Eij (w) taking into account Eij (load), Eij (s), 
10.
11. end for       

Eij (d) with following the rule of (3) 

 
 
load expressed in Mbps at Eij by 1024 strands for kbps and 
multiply the link critical cost. The other is the delay, which is 
computed as (Eij(d)×1,000), where 1,000 is a random large 
number that distinguishes the delay from the traffic arrival and 
link interference.  

For example, the link weight in terms of the traffic load and 
link interference at Ebc in Table 1 can be 0.205 
(Ebc(load)=105/1024×(Ebc(cc)=2)), and the link weight in 
terms of the delay at Ebc can be 1000 (=(Ebc(d)=1)×1,000) 
because the delay at Ebc(d) is one. Therefore, the Ebc(w) can be 
1000.205 (=0.205+1,000). 

We maintain the computed link weight information together 
with the network topology in the traffic-engineered database 
described in Fig. 1. We assume that Tload(i,j) is changed once 
every two or three months, that is to say, it shows a nearly static 
nature in terms of an on-line routing algorithm. In addition, the 
value of Eij(cc) is not changed if there is no change in the 
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network topology that subsequently affects the change in 
Pcandidate(Si,Di). Therefore, we need to compute the link weight 
(Eij(w)) only in the case of a network topology change, which is 
one of the major differences from the others [3], [10]-[13], [20], 
and [21].  

In the case of MIRA [10], it needs to identify the critical link 
to minimize the interference during every LSP setup request, 
whereas our scheme does not. Therefore, our scheme can 
greatly enhance the route computation time, which will be 
proven with the performance evaluation in section V. 

2. An Algorithm for Optimal Route Selection 

After computing the link weight for all links 
(∀Eij(w)∈G(N,E) ), we need to find an optimal route to setup 
the MPLS LSP that conforms to multiple QoS metrics such 
as bandwidth, end-to-end delay, and hop count. In this 
section, we propose an algorithm to provide the optimal 
route with multiple metrics based on the predetermined link 
weight. The optimal route selection procedure is composed 
of two steps: 

Step 1. Trim the unfavorable links or nodes and assign appropriate 
orders to each node and link that will be used to find the 
optimal route in the next step. 

Step 2. Select the optimal route that meets the multiple QoS 
parameters such as bandwidth and end-to-end delay. 

We define the LSP setup request as P(Rb,Rd,S,D), where Rb is 
the requested bandwidth, Rd is the requested end-to-end delay, 
S is the ingress node, and D is the egress node. For the first step 
of our route provision procedure, we would like to describe the 
method for assigning orders to each node and link along the 
weighted network graph that was composed by the LWCA. 
The order assignment procedure is composed of two steps: the 
first is trimming the unfavorable links (Eij(w)==∞ or Eij(ava)< 
Rb) from the weighted network graph G(N,Ew), and the second 
is assigning appropriate orders to each node (N(o)) and edge 
(E(o)) using the following algorithm, which is called the 
bounded order assignment algorithm (BOAA).  

BOAA is designed to minimize the complexity of order 
assignment by limiting the traversing of the network topology 
when the accumulated delay is exceeded by the requested 
delay bound (Rd). Intrinsically, the end-to-end delay metric is a 
sort of path metric, which means that we can determine the 
end-to-end delay after creating the route between an ingress 
node and an egress node. However, our approach can 
determine the violation possibility of the end-to-end delay at 
the stage of traversing the network topology instead of the 
completion of route computation. 

Figure 4 shows the pseudo-code for BOAA. In the order 

 

Fig. 4. Pseudo-code for BOAA. 

Algorithm for BOAA 

1. for all N(v, o) ← (no, ∞);
2. for all E(o) ← ∞;
3. Nactive ← P(D) and Ndest ← P (S); 
4. Nactive (v, o) ← (yes, 0); 
5. Hfactor ← 1,000,000 and Dfactor ←1,000; 

6. Procedure BOAA (Nactive, Ndest) 
7. if(Quotiant(Nactive)(o)/Dfactor)≥Rd && Nactive≠Ndest)
8. Nactive(v) ← yes and return; 
9. if(Nactive = = Ndest) return; 
10. Nactive (v) ← yes; 
11. for each E connected to Nactive do 
12. Npassive ← Eadj; 
13. if(E(w) = = ∞) 
14. E(v,o) ← (yes,∞); 
15. else if (E(o)> (Nactive(o) + Hfactor)) 
16. E(v,o) ← (yes, Nactive(o)+Hfactor); 
17. if(Npassive (o)> E(o)) { 
18. Npassive(o) ← E(o); 
19. BOAA(Npassive, Ndest); 
20. }
21. end of for 
22. end of Procedure 

 
 
assignment to the node and link, the node has two attributes of 
order and visiting flag (N(o,v)), where N(o) is the order and 
N(v) indicates whether N was visited or not. On the other hand, 
each link maintains three attributes E(w,d,o), where E(w) is the 
link weight assigned by LWCA, E(d) is the delay at the link, 
and E(o) is the order. In order to assign the order while taking 
into account the shortest path constraint, we also define one 
hop as a random large number of 1,000,000 (Hfactor=1,000,000), 
which is multiplied by a random number taking into account 
the delay (Dfactor=1,000) as described in LWCA by 1,000 (= 
1,000 (for delay) × 1,000 (for hop count)). 

BOAA determines the orders of each node and link, taking 
into account the combination of the link weight assigned by 
LWCA and hop count. However, we do not care about the 
available bandwidth in the order assignment process. 

There are two kinds of nodes: one is the active node (Nactive), 
and the other is the passive node (Npassive). Node Nactive 
represents the active node that allocates the proper weights to 
all of the neighboring nodes and links connected to it. Node 
Npassive represents the passive node order that is assigned by an 
active node, that is to say, Npassive is a neighboring node of 
Nactive. 

Figure 5 shows the weighted network graph that was created 
by LWCA, as described in the previous section. In order to 
assign the appropriate order to the node and link, we need 
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Fig. 5. An example of the weighted network graph created by
LWCA. 
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Fig. 6. The order assigned network graph by BOAA with the
weighted network graph shown in Fig. 5. 
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the LSP setup information and weighted network graph as 
shown in Fig. 5. Also, Fig. 6 shows the result of order 
assignment using BOAA under the weighted network graph 
of Fig. 5. In addition, a path setup request is composed of the 
ingress node, egress node, requested bandwidth, and end-to-
end delay constraint. In this example, we assume that the 
ingress node is e, the egress node is f, the requested 
bandwidth is 10 Mbps, and the end-to-end delay constraint is 
10 ms, as shown in Fig. 5. 

We traverse the weighted network graph from the egress 
node (P(D)) to ingress node (P(S)). Therefore, the first Nactive 
can be (P(D)) as shown in line 3 in Fig. 4. Initially, we assign 
(yes,0) to Nactive(v,o), and we set Hfactor to 1,000,000 and Dfactor to 
1,000. Henceforth, we traverse the weighted network graph 
until all nodes are traversed (∀N(v)==yes). When a node is 
Nactive, the adjacent node connected to the Nactive with an edge 
(E) can be Npassive. 

We determine the order of link (E(o)) connected to the Nactive  
using the following rule: 


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The order of the link to which (E(o)) is connected is 
determined by the order of Nactive(Nactive(o)) and the weight of 
the link (E(w)). If the weight of the link (E(w)) connected to 
Nactive is infinite (∞), E(o) can be ∞ regardless of the order of 
Nactive(o). If E(w) is not infinite and E(o) is less than or equal to 
Nactive(o) plus one, E(o) will not be changed. However, if E(w) 
is not infinite and E(o) is greater than Nactive(o) plus one, E(o) 
will be replaced with the value of Nactive(o) plus one. 

On the other hand, we need to determine the order of each 
node (N(o)). If the visiting flag of Npassive(v) is yes, then we 
traverse another link that is not yet traversed. If Npassive(v) is no, 
we assign the order of Npassive using the following rule: 



 >

=
.otherwise),(

));()(if(),(
)(

oN
oEoNoE

oN
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The rule for assigning orders to the passive node is simpler 
than the order assignment for each link. If the order of passive 
node (Npassive(o)) connected with a link is greater than that of the 
link (E(o)), Npassive(o) is replaced with E(o). If Npassive(o) is less 
than or equal to E(o), we do not change Npassive(o). For example, 
if node h is an active node, the order of passive node e(o) is 
determined by the value of Eeh(o) in Fig. 6. Because e(o) is less 
than Eeh(o), e(o) is not changed. 

When we traverse the network graph to assign orders to both 
the node and link, we evaluate the feasibility of the active node 
(Nactive(f) and whether it violates the constraint of the end-to-
end delay at each Nactive using the following rule: 
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If Nactive(f) is not feasible, then we do not traverse its branch 
any more, which results in a better performance in optimal route 
selection conforming to the end-to-end delay requirement (Rd). 

On finishing the order assignment for all the nodes and links, 
we select the most optimal route that conforms to the multiple 
constraints of bandwidth and delay with the order assigned 
network graph. In the process of route selection, we adjust the 
available bandwidth of each link along the selected path. 

We traverse the order assigned network graph from the 
ingress node until we reach the egress node by reducing the 
available bandwidth of the selected link (Eij(ava)-Rb).  

Starting from the ingress node, we select a link that meets the 
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following rule until the egress node is reached:  
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where n is the number of links connected to a node. 
For example, in the case of ingress node e, there are two 

candidate links of Eeb[3004000.215] and Eeh[5007000.055], as 
shown in Fig. 6. If we apply (5) to these two links, Eeh has less 
residual value than Eeb. Therefore, we select Eeh as an optimal 
link in terms of node e. Upon selecting an optimal link, we 
change the available bandwidth of the selected link using the 
equation Eij(ava)=Eij(ava)-Rb, where Rb is the requested 
bandwidth. 

If there are two or more links that have the same value after 
applying the equation in terms of any node, we select the 
minimum hop route by applying the following rule: 
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where n is the number of links having the same value that is 
computed by (6). 

If there are two or more links that meet the requested end-to-
end delay bound, we select the route with the minimum hop 
count because the longer hop route consumes more bandwidth 
than the shorter hop route. 

However, if there are two or more links that have the same 
hop count and the same values derived by (6) and (7), then we 
select the link that meets the following rule: 
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where n is the number of links having the same values that 
were computed by (6) and (7). 

Therefore, if there are two or more links that have the same 
hop count and the same values derived by (6) and (7), then we 
select the link that has the least end-to-end delay. 

As a result of applying the rules provided above, the selected 
route between ingress node e and egress node f that meets the 
requested bandwidth of 10 Mbps and the end-to-end delay of 
10 ms can be <e-h-k-l-f> under the sample network topology 
of Fig. 6.  

The main disadvantages of MIRA are its computation 
complexity and lack of consideration for the total traffic load 

offered to the network. The route selected by MIRA follows 
the minimum number of critical links (<e-b-c-f> in the 
example in Fig. 2 because the links Ebc, Ehk, and Ekl are critical 
links for the (S2,D2) node pair. On the other hand, MIRA 
traverses the network topology several times based on every 
ingress/egress pair to determine the critical links, which causes 
computation complexity.  

However, our algorithm is somewhat different from MIRA 
in terms of two aspects. Our algorithm is a scalable critical link 
identification scheme that is a table-driven approach to reduce 
the computation complexity, which we need to compute all 
possible paths (Pcandidate(Si,Di)) among the candidate ingress and  

egress pairs (∑
=

n

i
ii DS

1
),( ) only when the network topology is  

changed. However, MIRA’s approach computes and identifies 
the critical link every time a new LSP setup request arrives.  

Another difference is that MIRA does not take into account 
the unbalanced future traffic loads between every ingress and 
egress pairs, but our algorithm does. For example, let us 
assume that the critical links under the network topology in Fig. 
2 are Ebc, Ehk, and Ekl and that the ingress node is e and the 
egress node is f. In MIRA’s case, it selects the route that has the 
least number of critical links. Therefore, MIRA selects route 
<e-b-c-f> as the optimal one. On the other hand, our algorithm 
selects the route that has the least weight, reflecting four 
additional aspects such as unbalanced future traffic load, 
critical link, and end-to-end delay. Of course, our algorithm and 
MIRA both take into account the requested bandwidth. 
Therefore, under the same network topology, our algorithm 
will select route <e-h-k-i-f> as the optimal one. 

IV. Performance Discussion 

In this section, we discuss the various performance issues of 
the proposed M_CSPF algorithm in comparison with the other 
existing algorithms described in section III.  

1. Network Topologies 

In terms of network topology, as the number of links and 
nodes increases, more alternative routes become available for 
selection. Therefore, the accommodation capacity of LSP 
becomes higher in general, but the complexity of finding the 
feasible route will be increased in proportion to the number of 
increased links or nodes. In addition, the equipment and 
operating costs of the network grow as the number of links and 
nodes increase, so a topology with a small number of links and 
nodes is desirable for network service providers [22], [23].  

In this paper, we consider three different network topologies: 
tree network, ring network, and star network topologies, which  
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Fig. 7. The network topologies for verifying the existing CBR
algorithms and our M_CSPF algorithm. 

(a) Flat tree topology (b) Hierarchical ring topology (c) Torus topology 

 
 
are shown in Fig. 7. In order to strictly verify the CBR 
algorithms, including our M_CSPF, we selected some complex 
network topologies.  

The characteristics of the network topology should depend 
on the number of available routes for each pair of 
ingress/egress nodes. As the number of links increases, more 
alternative routes become available for selection. So, the 
accommodation capacity of LSP becomes higher in general. 
However, the equipment needs and operating cost of the 
network grow as the number of links increases, so a network 
topology with a small number of links is desirable for network 
service providers [23]. 

In this paper, we evaluate the proposed algorithm under three 
generic network topologies: flat tree, hierarchical ring, and 
torus topologies. The flat tree topology is a network with 
additional links from lower layers to higher layers. The 
hierarchical ring topology is a network that connects rings 
hierarchically. On the other hand, the torus topology is a grid 
network whose edge nodes are linked. 

2. Performance Discussion 

The main purposes of MPLS traffic engineering are to 
improve and control the end-to-end quality and enhance the 
efficiency of network resource utilization. Therefore, the 
evaluation of MPLS traffic engineering schemes should 
consider these two viewpoints. To evaluate the proposed 
algorithm and compare it with the others, we evaluated the 
random LSP accommodation of symmetric topologies using 
practical algorithms for MPLS traffic engineering, either 
actually installed by some vendors or ones that can be installed 
easily.  

In order to evaluate the performance in terms of efficiency of 
network resource utilization and end-to-end quality, we defined 
some simulation parameters, which are shown in Table 2. 

A. Efficiency of Network Resource Utilization 

In order to evaluate the efficiency of network resource 
utilization of various algorithms, including our algorithm, we 
use the following criterion, which gives the capacity of the  

Table 2. Simulation parameters. 

Parameter Value 

Bandwidth of each link 500 Mbps 

Propagation delay of each link Discrete value, 2, 3, and 6 (ms) 

Bandwidth required by LSPs 
Discrete value, 1, 10, and 50 
(Mbps) 

End-to-end delay required by 
LSPs Discrete value, 8 and 10 (ms) 

Max queue length of each LSR 16,348 (packets) 

 

network: 
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

=
      (9) 

We tried to create 500 LSPs between the random ingress and 
egress pairs with random discrete bandwidth for all algorithms 
and random discrete end-to-end delay constraint for our 
algorithm only. In this experiment, we did not consider the total 
traffic load, which will be discussed in a later section. We only 
measured the number of accommodated LSPs of each 
algorithm in this section.  

Table 3 shows the comparison of the characteristics and 
average accommodation ratio of each algorithm under the three 
different network topologies. Our algorithm showed the best 
accommodation ratio over WSP, SWP, SDP, and MIRA. 

In the case of well-known CSPF algorithms such as WSP, 
SWP and SDP, they showed a lower accommodation ratio than 
MIRA and our algorithm because they did not support the 
concept of a critical link. However, MIRA and our algorithm, 
which both support the concept of a critical link for future 
interference, showed a more enhanced accommodation ratio 
compared to WSP, SWP and SDP because they can minimize 
future interference, supporting the critical link concept that was 
originally proposed by MIRA and modified by our algorithm. 

Each algorithm showed different accommodation ratios 
according to the network topologies, namely, flat tree, 
hierarchical ring, and torus topologies. All algorithms showed 
the best accommodation ratio under the torus topology and 
showed the worst accommodation ratio under the hierarchical 
ring topology, as shown in Fig. 8 and Table 2.  

MIRA and M_CSPF showed nearly the same 
accommodation ratio, but MIRA did not support the end-to-
end delay constraint and total offered traffic load. Because our 
algorithm, M_CSPF, supports the concept of total offered 
traffic load, it showed a slightly enhanced performance (1 to 
1.5%) compared to MIRA under the three different network  
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Table 3. Comparison of the characteristics and average accommodation ratio of each algorithm under the three different network topologies.

Characteristics Average accommodation ratio 
Algorithms Bandwidth 

guarantee 
Delay 

guarantee 
Critical 

interference 
Total offered 
traffic load Flat tree 

Hierarchical 
ring Torus 

WSP yes no no no 62% 43% 68% 

SWP yes no no no 60% 39% 68% 

SDP yes no no no 66% 41% 79% 

MIRA yes no yes no 86% 63% 87% 

M_CSPF yes yes yes yes 87% 63% 91% 

 

 
 

Fig. 8. Comparison of the number of accommodated LSPs under
the three different network topologies. 
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topologies. In addition, our algorithm can provide the LSP that 
meets the end-to-end delay constraints, which are not 
supported by MIRA.  

B. End-to-End Quality  

In order to evaluate the performance of routing algorithms, E. 
Crawley [24] used the throughput value by statistical 
multiplexing. However, in this model, each LSP reserves links 
using the maximum transfer rate, so hardly any throughput 
deterioration appears. Instead of E. Crawley’s [24] approach, we 
used the one-way delay and packet loss rate, which are affected 
by quality deterioration earlier than the throughput, as the 
evaluation criterion of the end-to-end delay [21]-[26]. The delay 
can be defined as the sum of the delays at each link along the 
LSP’s route, and the packet loss arises in each link independently.  

Figure 9 shows the one-way delays and path computation 
complexity for all algorithms under the hierarchical ring 

 

Fig. 9. Comparison of end-to-end delay and path computation 
complexity under the hierarchical ring topology. 

0

100

200

300

400

500

600

700

800

900

50 100 150 200 250 300 350 400 450 500

D
el

ay
 (m

s)
 

Number of LSPs 

(a) End-to-end delay comparison 

WSP

SWP

SDP
MIRA

M_CSPF

(b) Average complexity of path computation 

0

50

100

150

200

250

50 100 150 200 250 300

Number of Nodes 

Av
er

ag
e 

co
m

pl
ex

ity
 o

f p
at

h 
co

m
pu

ta
tio

n 
(m

s)
 

WSP
SWP
SDP
M_CSPF
MIRA

 
 
topology. In terms of end-to-end delay, the hierarchical ring 
topology showed the worst LSP accommodation ratio 
compared to the two other topologies, which are flat ring and 
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torus. However, the same tendencies were found for the other 
topologies. 

Because all the algorithms, with the exception of the 
algorithm proposed in this paper, did not support the end-to-
end delay constraint, we measured the delay under the created 
LSPs without end-to-end delay constraint. However, in the 
case of our algorithm, we measured the delay with an end-to-
end delay constraint of 6 ms. 

As shown in Fig. 9, our algorithm showed the best 
performance compared to the others in terms of end-to-end 
delay and path computation complexity under the hierarchical 
ring topology. Because our algorithm can create an LSP with 
the end-to-end constraint under the weighted network graph 
while taking into account the total offered traffic load, which is 
impossible in the others, our algorithm showed the best 
performance in terms of end-to-end delay, including a 
performance enhancement of approximately 7% compared to 
MIRA. However, MIRA and our algorithm showed some 
greater performance degradation than WSP, SWP, and SDP. 
Because WSP, SWP, and SDP consider only the bandwidth 
constraint, they showed good performances compared to 
 

 

Fig. 10. LSP rejection probability versus the average offered load
of the network in Fig. 3. 
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Fig. 11. Network topology with a large number of critical links.

a d

c

b eS1 

S2 D1

D2

Ead

Eac Ecd 

Eab 

Ebc 

Ebe

Ece 

Ede

∀Eij(ava, d)=(150 Mbps,1ms) 

 

MIRA and our algorithm.  
Next, we describe the performance comparison between 

MIRA and our algorithm, M_CSPF, under a network topology 
with unbalanced offered load and a network topology with a 
large number of critical links. 

At first, we measured their performances under a network 
topology with unbalanced offered load, as shown in Fig. 2. 
There are three ingress and egress pairs, which are (S1,D1),  
(S2,D2), and (S3,D3). Each pair of ingress and egress has 
different offered traffic loads. We assumed that the traffic load 
(S1,D1) is five times higher than (S2,D2) and (S3,D3). In addition, 
the offered traffic loads at (S2,D2) and (S3,D3) are the same. 

Our algorithm showed a performance enhancement of 
approximately 22% compared to MIRA. The difference was 
caused by the method of controlling the traffic load. In the case 
of MIRA, it considers the critical link and not the future traffic 
load, which limits the possible candidate routes between any 
ingress and egress pair. However, our algorithm simultaneously 
deals with the future traffic load and the critical link, which can 
maximize the accommodation probability. 

In addition, we measured the performance of rejection 
probability by gradually increasing the offered traffic load 
under the bi-directional network topology with a large number 
of critical links, as shown in Fig. 11. We assumed that the 
available capacity and delay of all links are 150 Mbps and 1 ms, 
respectively. We also assumed that balanced traffic was offered 
at each ingress nodes of S1 and S2. 

In the case of MIRA and M_CSPF, there are six critical links 
(Eab, Ebc, Ebe, Ead, Ecd, and Ede) for an LSP setup between the 
ingress/egress pair (S1,D1), and there are six critical links (Eab, 
Ebc, Ead, Ead, Ebe, and Ede) for an LSP setup between the 
ingress/egress pair (S2,D2). This means that, in the case of 
MIRA, the possible route between the (S1,D1) pair can be <a-c-
e> and the possible route between the (S2,D2) pair can be <b-c-
d>. Thus, the critical disadvantage of MIRA is that the rejection 
probability is much higher than in our algorithm (M_CSPF) 
because MIRA does not take the traffic load into account, only 
the number of critical links. However, our algorithm showed a 
more balanced rejection probability compared to MIRA 
because it simultaneously takes into account the offered traffic 
load and the number of critical links. 

In addition, we should evaluate the performance of our 
algorithm in the case of network topology change. As 
described in the previous section, our algorithm computes the 
link weight using the LWCA only when there are changes in 
the network topology and total traffic load. We also described 
how our algorithm can enhance the path computation 
performance because it can limit the graph search when the 
accumulated link delay exceeds the requested end-to-end delay 
constraint.  
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In order to evaluate the performance of our algorithm under 
the situation of network topology change and variant end-to-end 
delay constraint with the torus network topology, as shown in Fig. 
7 (c), we measured the path computation performances of our 
algorithm and MIRA by gradually expanding the network 
topology and simultaneously increasing the end-to-end delay 
constraint. At each step, we added four nodes to the existing 
torus network topology, as shown in Fig. 7 (c), and increased the 
end-to-end delay by 0.1 ms starting from 0.5 to 1.5 ms. 

As shown in Fig. 13, our algorithm showed the best LSP 
computation performance in cases where the network topology 
is not changed. However, both MIRA and our algorithm showed 
nearly the same LSP computation performance in cases where 
the network topology is changed. However, in a real network 
 

 

Fig. 12. Comparison of rejection probability under the large
number of critical links. 
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Fig. 13. LSP computation performance according to network
topology change and gradual increment of end-to-end 
delay constraint. 
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environment, the network topology is not as frequently changed 
as in the simulated condition. Therefore, our algorithm showed 
the same LSP computation performance as MIRA under the 
worst case of frequent network topology change. However, our 
algorithm showed a greatly enhanced LSP computation 
performance when the network topology is not changed.  

On the other hand, because MIRA does not support the end-
to-end delay constraint, it showed a nearly linear increase in 
LSP computation time regardless of the end-to-end delay 
bound. However, our algorithm showed a more enhanced 
performance than MIRA even in the case of network topology 
change because it does not traverse the network topology any 
more when the accumulated delay at any link exceeds the end-
to-end delay constraint. However, MIRA traverses all the 
network topology to compute the network topology because it 
basically uses the Dijkstra algorithm to compute the LSP route.  

On the other hand, bandwidth utilization can be defined as 
the aggregate of all traffic currently being consumed on a hop 
or path. We measured the bandwidth utilization under the three 
different network topologies of flat tree, hierarchical ring, and 
torus. As a result of our evaluation, M_CSPF showed high 
bandwidth utilization of an average of 98% because it takes 
into account bandwidth, future traffic arrival, and link 
interference. However, the bandwidth utilizations of WSP, 
SWP, SDP, and MIRA were less than that of our algorithm.  

Therefore, our algorithm is suitable for the complex network 
topology with bounded end-to-end delay constraint. Since the 
value of the bounded delay constraint is small, the LSP path 
computation performance will be more enhanced compared to 
MIRA because the bounded delay constraint takes the effect of 
network topology pruning.  

As a result of the performance evaluation, our algorithm 
showed the best performance, with the exception of the path 
computation complexity, among all the others while conforming 
to the optimal path provision meeting multiple constraints such 
as bandwidth and end-to-end delay. Our algorithm showed a 
lower LSP setup rejection probability than WSP, SWP, DSP, and 
MIRA because our algorithm simultaneously takes into account 
the total offered traffic load and the link interference. In addition, 
by introducing the bounded order assignment concept, we can 
also enhance the LSP route computation performance when the 
network topology is changed, showing a slight enhancement in 
performance compared to MIRA in the case of a network 
topology change. Also, our algorithm showed a more enhanced 
LSP computation performance by reducing the value of the end-
to-end delay constraint.  

V. Conclusion 

Because the major objective of MPLS traffic engineering is 
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the enhancement of network resource utilization efficiency and 
end-to-end quality, we measured the efficiency of network 
resource utilization and end-to-end quality of the proposed 
algorithm and other algorithms such as WSP, SWP, SDP, and 
MIRA under three different network topologies: flat tree, 
hierarchical ring, and torus. In addition, we also measured the 
LSP setup rejection probability of our algorithm and MIRA 
under an unbalanced topology and a balanced network 
topology with a large number of critical links. We also 
compared the LSP computation performance of our algorithm 
and MIRA by gradually adding four nodes and by increasing 
the value of the end-to-end delay constraint under the torus 
network topology. 

By separating the link weight computation step from the LSP 
route provision, we can achieve the enhanced performance 
LSP route provision for MPLS traffic engineering. Our 
algorithm showed the best performance compared to WSP, 
SDP, SWP, and MIRA under the flat tree, hierarchical ring, and 
torus network topologies. In terms of efficiency of network 
resource utilization, we found that our algorithm showed a 2% 
enhancement in LSP accommodation ratio compared to MIRA. 
In terms of the end-to-end quality, our algorithm showed a 
performance enhancement of approximately 7% compared to 
MIRA in the case of end-to-end delay.  

In addition, the performance comparison of LSP rejection 
probabilities under the network topology, where the 
unbalanced total traffic load arrives at every ingress nodes, 
showed that the rejection probability of our algorithm was less 
than MIRA’s by approximately 20%. 

In terms of LSP computation performance, our algorithm 
also showed a better performance than MIRA in cases where 
the network topology was not changed, while our algorithm 
revealed that its LSP computation performance in the case of 
network topology change is slightly more enhanced than 
MIRA’s because our algorithm has the bounded order 
assignment. By pruning some parts of the network topology in 
the process of traversing the network topology, our algorithm 
enhanced its LSP route computation performance better than 
MIRA. We also found that our algorithm showed a good LSP 
route computation performance by minimizing the value of the 
end-to-end constraint because the portion of the pruned 
network topology will be widened by minimizing the value of 
the end-to-end constraints.  

Thus, our algorithm is suitable for providing the optimal 
LSP route computation with the bandwidth and delay 
constraints under a complex network topology. While our 
algorithm showed a good performance under every condition 
and topology, our algorithm is particularly good for 
application in LSP computation where the end-to-end delay 
constraint is tight. 

 Summary of Notation 
G(N,E) Network graph, where N is node and E is link 
Bava Available bandwidth 
Breq Requested bandwidth 
Eij Communication link (edge) connecting LSRi and LSR j

Eij(ava) Available bandwidth on Eij 
Eij(F) Feasibility on Eij, which can be YES or NO 
Eij(S) Status on Eij, which can be normal, fault, congestion or 

performance degradation 
Eij(w) Weight assigned to Eij, which is determined by LWCA 
Eij(load) Future traffic load on Eij 
Eij(cc) The number appearance of Eij as the critical link 
Eij(d) Delay on Eij 
Si A source LSRi to create LSP 
Di An destination LSRi to create LSP 
Tload(Si) Anticipating traffic load that will be injected at the 

ingress LSR, Si 
Pcandidate(Si,Di) All the possible routes between source LSR, Si and 

destination LSR, Di 
N(o) Order assigned to node 
E(o) Order assigned to edge 
Nactive Active node 
Npassive Neighbor node that is connected to active node via 

edge 
G(N,Ew) Weighted network graph that is created by LWCA 
Ndest Destination node 
P(Rb,Rd,S,D) Path creation requirement, where Rb is requested 

bandwidth, Rd is requested end-to-end delay, S is 
source node and D is destination node 

Hfactor A random large number, which is multiplied by a 
random number taking into account the delay  

Nactive(o) Order of active node, Nactive 
Npassive(o) Order of passive node, Npassive 
Nactive(f) Feasibility of active node, Nactive , which can be YES or 

NO 
Npassive(f) Feasibility of passive node, Npassive, which can be YES 

or NO  
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