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Event-Based Middleware for Healthcare Applications
Rossi Kamal, Nguyen H. Tran, and Choong Seon Hong

Abstract: In existing middleware for body sensor networks, en-
ergy limitations, hardware heterogeneity, increases in node tem-
perature, and the absence of software reusability are major prob-
lems. In this paper, we propose an event-based grid middleware
component that solves these problems using distributed resources
in in vivo sensor nodes. In our multi-hop communication, we use
a lightweight rendezvous routing algorithm in a publish/subscribe
system of event-based communication. To facilitate software reuse
and application development, a modified open services gateway ini-
tiative has been implemented in our middleware architecture. We
evaluated our grid middleware in a cancer treatment scenario with
combined hyperthermia, chemotherapy, and radiotherapy proce-
dures, using in vivo sensors.

Index Terms: Cancer treatment, healthcare, in vivo sensors, mid-
dleware.

I. INTRODUCTION

With the evolution of modern diagnostic systems, in vivo sen-
sors have been used to improve healthcare [1], [2].

Hyperthermia [3] is a prominent method for cancer treat-
ment. In hyperthermia, body cells are heated to a certain tem-
perature for a certain amount of time. Furthermore, radio-
therapy and chemotherapy are popular cancer treatment meth-
ods, and the combined use of hyperthermia, radiotherapy, and
chemotherapy [3] is considered the best approach to cancer
treatment. However, human cells are very sensitive, and if the
hyperthermia temperature exceeds a threshold value, the cells
could be damaged, making temperature scheduling a critical is-
sue in this approach.

Thermal aware routing algorithms [4], [5] have been proposed
to solve the temperature scheduling problem using in vivo sen-
sor nodes. However, the main problem is the necessary com-
plexity, which cannot be achieved with lightweight in vivo sen-
sor nodes. As the temperature increases, more heat is generated,
and more battery is wasted. Thus, a lightweight routing algo-on, Science and Technology (2011-0020518).
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ature, and power consumption. This has motivated us to develop
a grid approach [12] for in vivo sensor nodes.

We have proposed a grid middleware component that uses
event-based communication [13], [14] in in vivo sensor nodes
and an open services gateway initiative (OSGI)-based architec-
ture [15]. The developed system consists of a lightweight ren-
dezvous routing algorithm that schedules the temperatures for
the in vivo sensor nodes during combined hyperthermia, radio-
therapy, and chemotherapy procedures.

This paper is organized as follows. Section II discusses the
need for grid-based middleware for in vivo sensor nodes. In
Section III, we propose an OSGI-based [15] middleware ar-
chitecture and a lightweight rendezvous algorithm. Section IV
presents performance evaluations with our problem sce-
nario. Section V discusses related works, and finally, Section VI
discusses future directions.

II. THE NEED FOR GRID MIDDLEWARE FOR IN
VIVO SENSOR NODES

In vivo sensor nodes are made of heterogeneous hardware
components and are deployed for critical, sensitive, and com-
plex applications. With improvements in technology, smart in
vivo sensors that provide different services are becoming popu-
lar in various treatments. Middleware hides the underlying oper-
ating system and the heterogeneity of the physical devices from
the application layer. However, with in vivo sensor nodes, the
reduction of both energy dissipation and thermal effects is a
major concern. Thus, grid middleware can be a good solution
because it distributes services among the in vivo sensors and re-
duces both these quantities. Grid middleware can be beneficial
for in vivo sensors in the following ways.

A. Scalability

Scalability is a system’s capability of supporting a large num-
ber of in vivo sensor nodes. Middleware services are distributed;
there are almost no centralized approaches, and decisions and
state information are viewed locally, rather than globally. In ad-
dition, network bandwidth and memory are used efficiently.

B. Interoperability

Grid middleware is designed to support the heterogeneity of
the components of the network and is language- and platform-
independent. It can cope with the dynamic environment of the
components of distributed systems, and both fixed and mobile
devices can join and leave the distributed systems at run time.

C. Reliability

Quality of service (QoS) and reliability requirements can be
resolved with grid architecture. Different in vivo sensors may
have different requirements, while grid middleware may give
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generic support to these requirements. For example, a generic
media access control (MAC) framework can be integrated into
the middleware architecture. In vivo sensor nodes can use any
of the MAC protocols depending on their specific criteria.

III. PROPOSED MIDDLEWARE

A. Motivation

Due to its service-oriented design, OSGI has become ideal
for grid computing. The problems in Jini and UPnP have set
the stage for OSGI-based design of grid middleware for body
sensor networks (BSNs). The limitations of Jini include a lack
of platform independency in remote method invocation (RMI)-
based implementations and the management overhead for the
central look-up server, while the disadvantages of UPnP include
type mapping overhead, the high verbosity of extensible markup
language (XML), and a decreased performance with the sim-
ple object access protocol (SOAP). However, for any service,
loosely coupled components of different OSGI instances on mo-
bile middleware of different sensor nodes [16] can interact with
each other, as in a grid environment.

Bundles and services are major components of the OSGI
framework. A bundle is a package archive containing software
written for the OSGI framework. It represents a functional com-
ponent that can be installed, activated, deactivated, and unin-
stalled. Bundles can import or export packages from or to other
bundles and can provide services and register them with the
framework’s service repository. A service is an object that has
well-defined functionalities defined by object implementations;
it consists of a collection of interfaces and their different imple-
mentations. A service is registered by a bundle to the framework
and can thus be recognized by other bundles. There is a close re-
lation between bundles and service in the OSGI specification. A
bundle may register any number of services. Because services
are interfaces, they may have more implementations, and one
implementation may belong to different bundles. For example,
a service could be wireless communication, wherein implemen-
tations may include Bluetooth or Wi-Fi.

In our middleware, the distributed features of the local OSGI
framework are masked, and remote services are accessible as if
they were present in the framework. OSGI transparency is en-
sured as well. Although the Java virtual machine (JVM) is ab-
sent from this OSGI architecture, there are no other restrictions
on the OSGI specification, and all existing bundles are reusable;
therefore, OSGI noninvasiveness is maintained. This architec-
ture shows that a remote node for a service is the same as that of
the local framework, thereby allowing consistency to be main-
tained. This architecture allows the OSGI framework to operate
on a large range of body sensor nodes, and distribution does not
limit the configurations in which OSGI can be used; thus, gen-
erality is ensured. This system also prevents a BSN node from
being overwhelmed by the number of available services, and the
“statement of supply and demand” is ensured.

Grid middleware for BSN should be lightweight owing to the
energy constraints of body sensors. Existing sensor nodes uti-
lize component programming of nesC over TinyOS, the most
popular operating system for BSN. To design such lightweight
middleware, we must adopt this development environment. The

Fig. 1. Architecture of the proposed middleware.

OSGI design paradigm uses JVM over TinyOS. In this middle-
ware, we use the OSGI paradigm with nesC over TinyOS. Thus,
OSGI instances on different body sensor nodes use the compo-
nent programming of TinyOS to communicate within the grid
environment.

B. Architecture

The proposed grid middleware (Fig. 1) consists of several lay-
ers.

B.1 Application Layer

The application layer is the highest level of the middleware. It
consists of sub-layers EventManager, PublishSubscribeMan-
ager, and ConfigurationManager. Applications such as sens-
ing, comparison, and temperature control are related to Event-
Manager; publish-subscribe applications governed by the pro-
posed lightweight rendezvous algorithm are related to Pub-
lishSubscribeManager; while applications involving the instal-
lation, reinstallation, and uninstallation of sensor devices are
related to ConfigurationManager. All applications are consid-
ered as OSGI-bundled, and thus are installed in the application
layer. The benefit of using OSGI in the middleware is the ease
of installation from the user’s point of view. When we need to
add a new device to the system, an OSGI bundle implement-
ing the device’s service should be installed. Inside the middle-
ware, ServiceManager uses the LoadNode method and passes
the device bundle’s service location and the serial identifier of
the node. The installation process is performed in ServiceMan-
ager and is transparent to the end user, who only needs to enter
the node’s serial identifier; this can be done by simply clicking
on a button labeled “load sensor node.”
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B.2 Service Layer

The service layer consists of two sub-layers: ServiceManager
and NodeManager.

ServiceManager allows application bundles to use their ser-
vices by providing the corresponding objects. The objects can be
of either action, publish-subscribe, or configuration types. For
example, to add a new node to the system, ServiceManager cre-
ates an object of ConfigurationManager. Corresponding service
instances are created dynamically and are allocated to that appli-
cation bundle. In this case, the service instances are address as-
signment, hardware configuration, and device status that updates
with a beacon message transfer to every nodes. The LoadNode
method of ServiceManager is involved in the entire process. Ser-
viceManager is assigned to update each device status. It sends
a beacon message to the other sensor nodes to update the status
and forwards incoming messages to the application bundles. Ap-
plication bundles process the message to retrieve service infor-
mation.

NodeManager provides a service that allows sensor nodes to
communicate with an 802.15.4 message. It is assisted by Com-
mManager of the communication layer.

The service layer is the most important layer in the archi-
tecture. A set of open interfaces can be defined in this layer to
solve the interoperability problem resulting from sensor devices
and services from different manufacturers. Based on energy ef-
ficiency, different MAC protocols for the sensor network are
available. A generic MAC platform can also be considered in
the layer.

B.3 Communication Layer

CommManager in this layer receives messages and sends
them to the upper layer. Message communication is performed
through a serial port. CommManager, NodeTinyOS, and Node-
Manager are involved in the registration of different types of re-
ceived messages. Message types can be subscribed, published,
or brokered. Messages sent from other in vivo sensor nodes are
received by NodeTinyOS. NodeManager receives a message us-
ing the CommManager service. The message is then sent to
ServiceManager, which checks the message source address to
forward it to the application bundle related to the sensor node
information. This determines whether the message is from a
publisher, subscriber, or broker node and the message is dealt
with accordingly. The application bundle processes the incom-
ing message and forwards it to other application bundles that
will perform the required services.

B.4 Distributed OSGI Layer

The lowermost layer is the distributed OSGI layer, which
allows communication among multiple peers within the OSGI
framework, in a manner similar to a large OSGI framework.
This layer allows distributed applications to be constructed with
OSGI modularity. In this layer, OSGI bundles for different ser-
vices are transparently distributed along module boundaries.

C. Functionality

The proposed middleware has a generic interface so that it
can operate over underlying heterogeneous sensor nodes. We

Fig. 2. Generic sensing service is provided by ConfigurationManager
module in middleware. When to add a new sensor device or service,
ServiceManager creates an object of ConfigurationManager with its
instances like address manager, hardware configuration, and device
status.

have described this middleware as a generic sensing service in
Fig. 2. Sensor nodes of different sensing services, such as tem-
perature, pressure, heartbeat, and oxygen or glucose calculators,
from different manufacturers can be installed with this feature.

This generic framework supports different communication
protocols, including 802.15.4 and Bluetooth. We have described
this as generic communication in Fig. 3. The uniqueness of the
middleware is the generic support for event-based communica-
tion. This provides a generic publish-subscribe mechanism that
operates with any of the underlying sensor nodes and with both
single and multiple sensing phenomena. The event interface pro-
vides the ability to define an event independent of the underlying
sensing devices.

In our experiment, we considered a publish-subscribe mech-
anism for a temperature sensor node in an implanted sensor
network. An event is the threshold heat generated in the im-
planted sensor network. However, this publish-subscribe mech-
anism is applicable to single and multiple sensing phenom-
ena. Events can be chosen on the basis of specific require-
ments. For example, we can consider an implantable sensor
network with blood oxygen calculations and temperature- and
humidity-sensing abilities. We can apply our generic publish-
subscribe mechanism to this network on the basis of events such
as an energy dissipation threshold for these nodes.

C.1 Generic Sensing Service

The ConfigurationManager interface supports middleware
over heterogeneous sensor devices and sensing services. Appli-
cations such as installation, reinstallation, and uninstallation of
devices are performed by ConfigurationManager as OSGI bun-
dles. All applications are considered as OSGI bundles in the
middleware. For example, when we want to add a device to
the system, an OSGI bundle is created with those device prop-
erties. Inside the middleware, ServiceManager creates an ob-
ject of ConfigurationManager. Corresponding service instances
such as address assignment, hardware configuration, and device
status updating, are created immediately. ServiceManager then
calls LoadNode by transmitting the OSGI bundle service loca-





KAMAL et al.: EVENT-BASED MIDDLEWARE FOR HEALTHCARE APPLICATIONS 301

tification confirmation message from the lightweight publisher.
When a rendezvous node learns of an event, services on

the subscribers and publishers are started and stopped, respec-
tively. At the lightweight publisher (Fig. 7) (algorithm 4) in
each cluster, when an event occurs, the publisher stops related
services and sends a notification message to the broker, which
then forwards it to subscribers. Subscribers immediately start
the related services and notify the broker. The broker also sends
notification confirmation to the rendezvous node, including the
list of successfully subscribed nodes and previous events. The
rendezvous node then verifies whether all subscribers in each
cluster have been successfully notified (algorithm 5). Packet
loss might occur between either the publisher and broker, bro-
ker and subscriber or broker and rendezvous node. In such
cases, the rendezvous node directly communicates with the sub-
scribers to start immediately their services, if they have not yet
started. Moreover, the rendezvous node directly stops the ser-
vices of the publishers if they have not been stopped yet.

Given a set of body sensor nodes and a rendezvous node,
the body sensor nodes are divided into clusters. The nodes in
each cluster can function as a publisher, subscriber or broker. A
rendezvous node stores information regarding cluster formation
and the roles of cluster nodes.

Let C, S, P , B, and R represent the cluster, subscriber, pub-
lisher, broker, and rendezvous nodes, respectively.

Algorithm 1 Installation at rendezvous node
1. for all i such that 0 ≤ i ≤ C do
2. for all j such that 0 ≤ j ≤ S do
3. Send cluster information and subscriber role

to node j
4. end for
5. for all j such that 0 ≤ j ≤ P do
6. Send cluster information and publisher role

to node j
7. end for
8. Send cluster information and broker role to a node.
9. end for

Rendezvous node R sends cluster information and a role
(publisher, subscriber, or broker) to each node of any cluster
(algorithm 1). R verifies each cluster (i) and notifies each node
(j) that will function as a subscriber or publisher. R also de-
notes another node as the broker, which there can be one of in
each cluster.

Algorithm 2 Lightweight subscription
1. for all i such that 0 ≤ i ≤ S do
2. Subscribe i to the broker with event in that cluster
3. end for
4. Broker sends subcription confirmation to rendezvous node

R

In the lightweight subscription method (algorithm 2), each
subscriber node (i) is subscribed to a broker for a specific event.
Then, the broker sends a subscription confirmation to the ren-
dezvous node R.

Algorithm 3 Post subscription at rendezvous node
1. for all i such that 0 ≤ i ≤ C do
2. for all j such that 0 ≤ j ≤ S do
3. if Subscription confirmation is not found for

subscriber j then
4. (Wait for the event occurrence until

the end of lightweight publish)
5. When corresponding event occurs
6. start related service of subscriber j

and
7. stop related service of corresponding

publisher P .
8. end if
9. end for
10. end for

Rendezvous node R verifies that every subscriber (j) of
every cluster (i) has received a subscription confirmation
(algorithm 3). If there is any subscriber missing such confir-
mation, R waits for the corresponding event to occur until the
end of lightweight publish (algorithm 4). R learns about event
occurrence from the notification confirmation found at the end
of lightweight publish. When that event occurs, R communi-
cates directly with subscriber j to start the related service and
with the corresponding publisher to stop the related service.

Algorithm 4 Lightweight publish
1. for all i such that 0 ≤ i ≤ P do
2. Stop related service
3. Publish event from publisher i to broker B
4. end for
5. for all j such that 0 ≤ j ≤ S do
6. Forward notification from broker to subscriber j
7. end for
8. for all k such that 0 ≤ k ≤ S do
9. Start related service.
10. Forward confirmation from subscriber k to broker
11. end for
12. Send notification confirmation (the list of successfully no-

tified subscribers and occurred events) to rendezvous node
R

In the lightweight publish (algorithm 4), when an event oc-
curs, each publisher (i) in a cluster stops the related service and
sends an event notification or publish message to the broker. The
broker then forwards the notification to each subscriber (j) of
the cluster. Then, each subscriber (k) starts the related service
and sends a confirmation to the broker. Last, the broker sends
a notification confirmation message to rendezvous R, including
the set of events and successfully notified subscribers.

Rendezvous node R verifies that every subscriber (j) of every
cluster (i) has received a notification confirmation (algorithm 5).
If there is any subscriber missing such confirmation, R commu-
nicates directly with subscriber j to start the related service and
with the corresponding publisher to stop the related service.

The proposed routing algorithm is lightweight in the follow-
ing ways: First, in lightweight subscription, subscribers send
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Algorithm 5 Post notification at gateway node
1. for all i such that 0 ≤ i ≤ C do
2. for all j such that 0 ≤ j ≤ S do
3. if Notification confirmation is not found for

subscriber j then
4. start service of subscriber j, if not

started yet and
5. stop service of corresponding pub-

lisher, if not stopped yet.
6. end if
7. end for
8. end for

messages to a broker node in the cluster. The broker node then
sends the subscribed node information to the rendezvous node.
The broker does not need to communicate with other broker
nodes on its way to the gateway node. The broker of each clus-
ter separately sends subscription information to the rendezvous
node. This is very lightweight compared to the redundant com-
munication involved in the subscription of prior rendezvous al-
gorithms. In a lightweight publisher, publishers send event no-
tifications to the broker node in each cluster. The broker then
sends notifications to corresponding subscriber nodes. Each
cluster operates in the same way. A publish message does not
encounter other brokers on its way to the gateway node as in
prior rendezvous algorithms.

Second, the broker node of any cluster can communicate di-
rectly with the rendezvous node by a single hop. It does not
need to know a path through other brokers to reach the gateway
node, and so we do not need to maintain a distributed hash table
for body sensor nodes with limited power.

Third, the rendezvous node is common to every cluster, and
no broker node can become a rendezvous node. So, the bro-
ker node of any cluster does not need to carry the metadata
of brokers of other clusters as in previous rendezvous algo-
rithms. Thus, the overhead of metadata transmission among the
brokers is not present in our proposed lightweight rendezvous
routing algorithm.

Fault tolerance is performed in a lightweight manner in the
proposed routing algorithm. After lightweight subscription, a
broker node of a cluster sends its subscription confirmation to
the rendezvous node. The rendezvous node then checks whether
each subscriber has a confirmed subscription for each clus-
ter. However, packet loss might occur between the subscriber
and broker or broker and rendezvous nodes. The rendezvous
node waits for the occurrence of the corresponding event. The
rendezvous node learns of event occurrence from a notification
message at the end of the lightweight publishing step. When
the event occurs, the rendezvous node directly communicates
with the subscriber and publisher to start and stop their related
services, respectively. Generally, after lightweight publishing,
the broker of a cluster sends notification confirmation (a list of
events and successfully notified subscribers) to the rendezvous
node.

The rendezvous node then checks if all subscribers in each
cluster have been successfully notified. Packet loss might occur
between the publisher and broker, broker and subscriber, sub-

Table 1. Major notations used in mathematical analysis.

Parameter Description

T Total generated temperature

TS Temperature at subscription

TP Temperature at publish

TSB Subscriber to broker temperature

TBR Broker to rendezvous temperature

TP B Publisher to broker temperature

TBR Broker to rendezvous temperature

E Total dissipated energy

ES Energy at subscription

EP Energy at publish

ESB Subscriber to broker energy

EBR Broker to rendezvous energy

EP B Publisher to broker energy

EBR Broker to rendezvous energy

scriber and broker, or broker and rendezvous nodes. Therefore,
if the rendezvous node receives no confirmation of the notifi-
cation of any specific subscriber, it directly communicates with
that subscriber to immediately start its service. At the same time,
the rendezvous node communicates with the corresponding pub-
lisher node to immediately stop its service.

IV. PERFORMANCE EVALUATION

A. Problem Scenario

The combination of hyperthermia, radiotherapy, and
chemotherapy procedures has become the most prominent can-
cer treatment. The treatment depends on the temperature gen-
erated in human cells. While the temperature remains below a
certain threshold, hyperthermia enhances the performance of ra-
diotherapy and chemotherapy; however, if the temperature ex-
ceeds that threshold, the cells can be damaged, resulting in dan-
ger to the patient’s health. Let us consider sensor nodes that are
implanted to monitor temperature scheduling during combined
hyperthermia, radiotherapy, and chemotherapy. If the tempera-
ture of a publisher node exceeds the threshold, it will direct the
broker node to dissipate temperature to the subscriber node or
nodes. If the temperature dissipation is not performed success-
fully, a remote gateway node is notified. Moreover, energy dis-
sipation is considerable during this process; the battery power is
a function of the amount of heat generated. To extend the bat-
tery life of in vivo sensors, reduction in energy consumption is
important.

B. Mathematical Analysis

Total generated temperature (T ) is the sum of temperature for
subscription (TS) and temperature for publish (TP ).

T = TS + TP
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In proposed lightweight rendezvous routing algorithm, we
have considered that body sensor nodes are divided into some
clusters. Total subscription temperature (TS) is the sum of sub-
scription temperature at different clusters (TCS ). Total publish
temperature (TP ) is the sum of publish temperature at different
clusters (TCP ).

TS =
c�

i=1

TCS

TP =
c�

i=1

TCP

In each cluster, lightweight subscription temperature is repre-
sented as

TCS =
s�

i=1

TSB + TBR .

In each cluster, lightweight publish temperature is given by

TCP =
p�

i=1

TP B +
s�

i=1

TSB +
s�

i=1

TSB + TBR .

TSB stands for generated temperature when packets move
from a subscriber to the broker node. Temperature is gener-
ated in two ways: when packets are exhibited from subscribers
and when packets are received by brokers. TBR stands for tem-
perature generated when a packet moves from a broker of each
cluster to the rendezvous node. Temperature is generated when
a packet is exhibited from a broker.When a packet is received
by rendezvous, it’s temperature increase is not considered. It is
not implanted in body, it is placed outside part of body in our
experiment.
TP B stands for generated temperature when packets move

from the publisher to the broker node. Temperature is generated
in two ways: when packets are exhibited from publishers and
when packets are received by brokers. TBS stands for tempera-
ture generated when packets move from the broker to subscriber
nodes. Temperature is also generated in two ways as in previous
case.
c represents maximum number of clusters. s and p represent

maximum number of subscriber and publisher nodes, respec-
tively in a cluster.

We can rewrite the equations for energy as

E = ES + EP

ES =
c�

i=1

ECS

EP =
c�

i=1

ECP

ECS =
s�

i=1

ESB + EBR

ECP =
p�

i=1

EP B +
s�

i=1

ESB +
s�

i=1

ESB + EBR .

The main limitation of our mathematical model is that we
consider a network with one gateway node and only ten body

sensor nodes divided into three clusters. The number of sub-
scribers, publishers, and brokers is each less than five. The sim-
ulations show that the same equations also hold with a simi-
lar number of publishers, subscribers, and brokers in a ten-node
set. We have considered neither large clusters nor a large number
of body sensor nodes. Assuming that each cluster has only one
broker, if the cluster is large and the number of publishers and
subscribers is high, there will be a large overhead on the bro-
ker node because all subscription and publish commands will
go through a single broker node.

If there are a large number of body sensor nodes, we can con-
sider many small clusters, each applying the lightweight ren-
dezvous routing algorithm. Generally, only the minimum num-
ber of body sensors is used in human healthcare applications.
These nodes are usually deployed in a static fashion because of
physiological effects. Issues like dynamic movement and mo-
bility of body sensor nodes are not important in such a network.
Thus, decisions about cluster formation and connected coverage
must be made prior to sensor network deployment. On the other
hand, if a large number of body sensor nodes are necessary, it
is possible to use the proposed middleware with our lightweight
rendezvous algorithm. In addition, we must decide the cluster
formation and connected coverage of the sensor nodes prior to
installation.

B.1 Complexity Analysis

The complexity of the proposed routing algorithm can
be determined in terms of the lightweight subscription and
lightweight publish algorithms at the body sensor nodes and the
installation, post-subscription, and post-publish mechanisms at
the rendezvous node.

• Lightweight subscription: In each cluster, all subscribers
send subscription message to a broker. After that, the bro-
ker sends a subscription confirmation message to rendezvous
node. The complexity in each cluster depends on its total
number of subscribers (NS) and the single packet transmis-
sion from its broker to the rendezvous node. The complexity
is O(NS) + O(1)= O(NS ).

• Lightweight publish: In each cluster, publishers send noti-
fication messages to a broker and then broker forwards mes-
sages to subscribed nodes. Subscribed nodes then send a con-
firmation message to the broker. After that, the broker sends
a notification confirmation message to the rendezvous node.
The complexity in each cluster depends on its total number
of publishers (NP ), total number of subscribers (NS ), single
packet transmission from the broker node to the rendezvous
node. The complexity is O(NP )+O(NS)+O(NS )+O(1)=
O(NP ) + O(NS ).

• Installation at rendezvous node: Rendezvous node sends
cluster information and role (subscriber, publisher and bro-
ker) to body sensor nodes of each cluster. We assume that
each cluster has at most one broker node. So, we assume that
number of maximum clusters can be NB . The complexity at
rendezvous node depends on total number of brokers (NB ),
total number of subscribers (NS) and total number of pub-
lishers (NP ). The complexity is O(NB (NS + NP + 1))=
O(NB (NS + NP )).
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Table 2. Events, subscribers, brokers, publishers used in simulation.

Parameter Description Value

Number of experiments 8
Number of total nodes in the network 10

NB Number of event brokers 1–5
NS Number of event subscribers 2–5
NP Number of event publishers 2–5

Number of events 2–5
Number of events per publisher 2–5
Number of events per subscriber 1–5

• Post Subscription at rendezvous node: After the broker node
sends subscription confirmation message at lightweight sub-
scription, rendezvous node checks whether for each cluster,
if there are subscription confirmations for all of its subscriber
nodes. If subscription confirmation is not found for any sub-
scriber, it waits for the corresponding event-publish. When
the event is published, rendezvous node immediately starts
and stops related services of subscriber and publisher re-
spectively. The complexity at gateway node depends on to-
tal number of brokers (NB ) and total number of subscribers
(NS). The complexity is O(NB NS).

• Post Publish at rendezvous node: After the broker node sends
notification confirmation message at lightweight publish, ren-
dezvous node checks whether for each cluster, if there are
notification confirmations for all of its subscribed nodes. If
notification confirmation is not found for any subscriber, ren-
dezvous node immediately starts and stops related services
of subscriber and publisher respectively. The complexity at
gateway node depends on total number of brokers (NB )
and total number of subscribers (NS ). The complexity is
O(NB NS).

C. Simulation Environments

We have performed our extensive simulation in a JAVA pro-
gram. Tables 2 and 3 show simulation environment used. Event
type is unique and it occurs when the temperature of node ex-
ceeds threshold value of 46 ◦C.

Our simulations consist of several cases. In observation 1, we
compare our proposed lightweight rendezvous algorithm (LR)
with a rendezvous routing protocol in a 6×6 mesh topology. In
observation 2, we compare the performance of LR with differ-
ent randomly distributed node orientations. In observation 3,
we compare the proposed LR with directed diffusion, flooding,
and omniscient multicasts in a 12×12 mesh topology simula-
tion. Each experimental set consists of ten in vivo sensor nodes
and a rendezvous node. The simulation steps are as follows.

C.1 Subscribe

In each cluster, subscriber nodes subscribe to a broker. The
broker then confirms subscriptions with the rendezvous node.

C.2 Publish Least Fault Tolerant

We considered the least fault-tolerant cases of both the
lightweight rendezvous and rendezvous routing algorithms.

Table 3. Simulation environment.

Parameter Description Value

EP Publisher’s power 2 mW
ES Subscriber’s power 2 mW
EB Broker’s power 5 mW
Eex Node’s exhibiting power 2 mW
Erec Node’s receiving power 2 mW
EexR Node-rendezvous node(power) 5 mW
TP Publisher’s temperature 1 U
TS Subscriber’s temperature U
TB Broker’s temperature 5 U
Tex Node’s exhibiting temp 1 U
Trec Node’s receiving temp. 1 U
TexR Node-rendezvous node (temp.) 2 U
Cp Threshold temperature 46 ◦C.
K Thermal conductivity 0.498 [J/ms ◦C]
Tb Fixed blood temperature 37 ◦C
d Max density 1040 kg/m3

In the lightweight publisher, when a broker does not receive
confirmation from a subscribed node, the broker does not send
notification to the rendezvous node. Packet transfers from sub-
scribers to the broker or from the broker to the rendezvous node
do not occur. However, fault tolerance is compromised because
the rendezvous node cannot perform actions according to the
post-notification algorithm.

In the rendezvous routing algorithm, when a broker does not
receive cluster information from other broker nodes, consider-
ably less heat is generated. However, fault tolerance is compro-
mised because when a broker does not have a path to another
broker, it may miss its path to the rendezvous node.

C.3 Publish Most Fault Tolerant

We also considered the most fault-tolerant cases for both the
lightweight rendezvous and rendezvous routing algorithms.

In the lightweight rendezvous routing algorithm, a broker
receives confirmation from the other subscribed nodes at the
lightweight publish step. The broker sends a notification mes-
sage to the rendezvous node. The rendezvous node can then
take action according to the post-notification algorithm if there
is any packet loss between either the publisher and subscriber,
subscriber and broker, or broker and rendezvous nodes. Fault
tolerance is present, but it involves more heat generation in the
broker because of the packet transmission from the subscriber
to the broker and from the broker to the rendezvous node.

In rendezvous routing, every broker sends cluster information
to other brokers on its way to the rendezvous node. This gen-
erates large quantities of heat owing to the large packet sizes;
however, it also ensures that a broker can find a path to the ren-
dezvous node in case of packet failure.

D. Performance Metrics

Three performance metrics were considered: Generated heat,
dissipated energy, and delay.
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Fig. 8. Comparison on generated temperature on 3 different sets of 10 in vivo sensor nodes using LR and rendezvous routing algorithm(RR) in
both the least-fault-tolerant (left side) and the most-fault-tolerant(right side) situtations. In each figure, LR generates less temperature than RR
in broker nodes, where other nodes generate equal temperature. Node orientation (3 publishers, 4 subscribers, and 3 brokers) representing
Figs. 8(e) and 8(f) is the most desirable because it generates the least temperature using LR. This also generates almost same temperature in
both the least and the most fault tolerant states using LR. Node orientation for Fig. 8(c) and 8(d) is not acceptable because it generates huge
temperature in the single broker node and it can be dangerous for surrounding human tissues. Most-fault-tolerancy (right side) causes much
more temperature in brokers of RR than brokers of LR.
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Fig. 9. (a) Total temperature and (b) total energy dissipation in different node orientations using lightweight rendezvous routing algorithm.

subscribers and publishers. Reducing the total number of bro-
kers also reduces theÞnal temperature. The temperature is
minimized when the node distribution is approximately bal-
anced (e.g., three publishers, four subscribers, and three bro-
kers). However, if we reduce the number of brokers such that
we have only one broker and all other nodes are subscribers or
publishers, the temperature is decreased. The main concern is
that the temperature of the single broker is very high. This can
be very dangerous for nearby cells that may be damaged due to
thermal effects.

Fig. 9(b) shows the total energy dissipated by our proposed
routing algorithm. With three publishers, four subscribers, and
three brokers, the least and most fault-tolerant cases dissipate
similar amounts of energy, less than that with other node orien-
tations.

To summarize, our simulations show that an orientation with
three publishers, four subscribers, and three brokers provides the
best results with our lightweight rendezvous routing algorithm.

E.3 Observation 3

Next, we compared our proposed lightweight rendezvous
routing algorithm withßooding, omniscient multicast, and di-
rected diffusion protocols [20] by implementing all four of them
as a Java program. We chose two performance metrics, de-
lay and dissipated energy. We used ten nodes with four sub-
scribers, three publishers, and three brokers in a 12 cm× 12
cm square. The subscribers were placed at the bottom and
top of the square, with the publishers and brokers in the mid-
dle. A subscriber/publisher can be considered as source/sink or
sink/source at the time of subscription or publication, respec-
tively. The broker can be considered as the interim node used
in directed diffusion, multicast, orßooding. Each node has a
transmission range of 2 cm. To calculate the delay and dissi-
pated energy, we executed one of the four protocols among the
nodes for 120 s, with four events generated every 30 s. Packet
transmission among the in vivo sensor nodes required one unit
of energy, while packet transmission between the in vivo sensor

Fig. 10. Delay comparision of ßooding (FL), omniscient multicast (OM),
directed diffusion (DD), and lightweight rendezvous routing (LR) al-
gorithm.

node and the rendezvous node required two units of energy.
Fig. 10 compares the delays under the various schemes. In

the ßooding scheme, the delay is very high since it takes time
for every source to send packets to every other node. For the
omniscient multicast scheme, the delay is relatively small since
the sources use the shortest paths to send packets to the sinks.
Direct diffusion shows slightly less delay with the advantages of
aggregation and in-node processing. In the proposed lightweight
rendezvous routing algorithm, the delay is very small compared
to the others because in each cluster, nodes require relatively
few hops to send a packet to the rendezvous node.

Fig. 11 compares the energy dissipated by all four meth-
ods. Fig. 11(a) shows that theßooding scheme with sources
placed at the bottom and top of the squareßoods all events to
every node in the network. The nodes placed in the middle of the
square dissipate more energy because there is relatively higher
packet transmission in that region. Fig. 11(b) shows that with the
omniscient multicast scheme, each source generates the shortest
path multicast tree to all sinks. All multicast trees use a common
interim node to create the shortest path, and hence, energy dissi-
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Fig. 11. Energy dissipation in a set of 10 body sensor nodes using (a) flooding, (b) omniscient multicast, (c) directed diffusion, and (d) lightweight
rendezvous routing algorithm.

pation for that node is large. Fig. 11(c) shows that with directed
diffusion, energy dissipation is low as compared to that with
flooding and multicast schemes. Interests are propagated from
sources to sinks, placed at the middle positions using interim
broker nodes, and events are propagated according to the reverse
path. Fig. 11(d) shows that the lightweight rendezvous routing
algorithm dissipates relatively less energy as compared to the
previous three protocols. The nodes are divided into three clus-
ters, with the lightweight publish-subscribe mechanism working
separately in each cluster. As brokers are involved in subscrip-
tion, publication, and communication with the rendezvous node,
energy dissipation is higher in these broker nodes.

V. RELATED WORKS

A. Temperature-Aware Routing Algorithms

Temperature-aware routing algorithms [4], [5] that generate
less heat have been proposed in the past, but they all suffer from
complexity overhead. Existing middleware for BSNs [10], [11]
uses gateway approaches in which body sensor nodes are in con-
tact with a gateway device. Grid middleware approaches for in

vivo sensor nodes have not been extensively studied, although
[17] discusses the prospects of sensor networks in cancer hyper-
thermia treatment without making any conclusive proposal.

B. OSGI and its Implementation in Distributed and Sensor En-
vironments

OSGI [15] is an open specification for the delivery of multiple
services over wide area networks to local networks and devices.
It is an open framework that enables multiple software services
to be loaded and run on a service gateway. The OSGI specifi-
cation supports easy maintenance of devices and services, dy-
namic update of device drivers, and easy of delivery of services.

Research is ongoing to take advantage of both central mod-
ule management and distributed deployment. R-OSGI [18] is
a distributed middleware platform that extends the centralized
OSGI platform to support distributed module management. For
developers, OSGI is a conventional module management sys-
tem; however, at runtime, it serves as a distributed application
with its installed modules. However, R-OSGI uses the Java run-
time environment as in the core OSGI specification.

Efforts have been made to deploy OSGI in sensor net-
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works. [19] presents an OSGI middleware component called
CITIC that attempts to provide scalability, easy integration,
and dynamic deployment of wireless sensor devices into am-
bient assisted living environments [20], [21]. [18] aimed to
bridge the gap between high-end network devices and resource-
constrained sensors with a service-oriented architecture built on
OSGI. All of these use JVM at runtime. However, component-
based nesC over TinyOS is still the most feasible OS for sen-
sor networks, and JVM solutions are not efficient for resource-
constrained implanted sensor nodes. In our previous work [12],
we have shown how OSGI can be used in a grid middleware for
BSNs. Our proposed middleware uses OSGI with a C runtime
environment deployed in implanted sensor nodes.

VI. CONCLUSION

Overlay broker network routing incurs an overhead cost for
in vivo sensor nodes. In this paper, we use a new approach
consisting of a grid middleware component with a lightweight
rendezvous algorithm as an alternative. Our routing algorithm
schedules temperatures in in vivo sensor nodes to facilitate
combined hyperthermia, radiotherapy, and chemotherapy can-
cer treatment. We have considered experimental sets consisting
of ten nodes. In future work, we propose to study additional
issues related to lightweight broker network routing, including
scalability and node orientation.
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