
On Adaptive Pre-fetching and Caching the Contents
in Content Centric Networking

Kyi Thar, Saeed Ullah, Doo Ho Lee, Choong Seon Hong

Department of Computer Science and Engineering, Kyung Hee University,
446-701, Republic of Korea

Email:{kyithar, saeed, dooholee, cshong}@khu.ac.kr

Abstract—In the initial proposal of Content Centric Network-
ing (CCN), routers store all passing contents (a content composed
of several segments). So, in the best case, the routers provide the
contents directly to the users when the requested contents are
stored in its cache. In the worst case, the requested content
is just only located at the original server which is faraway
from the current Autonomous System. Thus, the delay to get
all the segments of requested content may be very high and
users’ Quality of Experience will be very low. In this paper,
we propose a scheme to reduce the delay to get the contents,
improve the cache hit and also reduce the hit distance. Core
routers store only one copy of the contents and also forward
the requests cooperatively. Then, as the main proposal the per-
fetching algorithm is proposed at the access routers, in order to
fetch the locally popular content(s) before requested by the users.
We have intensively evaluated the performance of our proposed
scheme by using the chunk-level simulator. We have shown in
the simulation results that our proposal’s performance is better
than the other similar proposals.

Keywords—Coordinated Caching, Prefetching, Content Centric
Network, Cooperative Forwarding, Consistent Hashing.

I. INTRODUCTION

According to the Cisco Visual Networking Index (VIN) [1],
a demand of watching video through the Internet is increasing
exponentially. The structure of current Internet, which is an
end-to-end communication scenario, is not efficient enough to
deal with this increasing demand. In order to cope with this
traffic increase, Jacobson and et al. have proposed the Content
Centric Networks (CCN) [2]. The main feature of the router
used in CCN is to store contents temporarily and give the
copy of stored content to the users when they request. CCN
users request the content in the form of segmented sequences
and these segments are call chunks. In CCN Interest packets
are used to request the contents or find the contents inside
the network and in a reply get the Data packet. One Interest
packet retrieves only one Data packet which is one segment
of a content or one chunk.

Whenever a router receives the Interest, first of all, it finds
the requested chunk in the Content Store (CS), the cache
memory of the router, that stores copies of the passing Data
temporarily in the form of the chunk. If the requested chunk
is found in its CS, the router immediately provides that chunk
to the users and discards the Interest. Otherwise, the router
checks its Pending Interest Table (PIT), which keeps the list of
forwarded Interests. If the requested Interest is listed, updates
the interface and wait for the returning chunk. Otherwise, the

router checks its Forwarding Interest Base (FIB), which stored
the lists of the incoming and outgoing Interface, in order to
find the best path to forward the Interest. If there is no entry
for the desired destination then the interest packet is flooded
in the network through all the interfaces.

Originally, the forwarding strategy is, flood the Interests to
find the chunk(s) inside the network. Then, all the returning
chunks are stored at the CS of each router and that process is
handled by the cache decision strategy. If the CS is full, the
stored chunks are replaced with new chunks by using cache
replacement strategy. Here, we would like to discuss several
issues of CCN, especially on forwarding and caching strategy.

In the default CCN, a router floods the Interest to the
neighbor routers to find the content. Flooding the Interests
degrades the performance of the network because every router
receives the Interests and need to go through its CS, PIT and/or
FIB. Therefore, in [3], [4], router ranked the interfaces and
choose best path to retrieve content objects. If the first ranked
route doesn’t provide the content, router chooses the second-
ranked interface to forward that unsatisfied request. [5] uses
Availability Info Base (AIB) to forward the Interests, however,
it needs exchanging extra messages to update AIB. Classical
hash based forwarding is used in [6] [7] [8] and it forwards
request without periodically exchanging extra messages.

Originally, the routers on the requested path store the same
contents which affect the utility of the cache space of the
routers, this mechanism is called Leave Copy Everywhere
(LCE). Leave Copy Down (LCD), which is proposed in [9]
for the web caching, reduces the duplicate contents on the
request path, but still don’t eliminate it completely. Progressive
Caching [10] extends the LCD to cache popular chunks and
solve the problem of one timer cache in order to improve cache
utilization of each router. In [11], the probabilistic caching
scheme is proposed which takes the cache capacity of the path
in consideration. According to this scheme, the routers closer
to the users have higher probability for caching the content.
[12] tries to solve the caching problem of the duplicated chunks
around one hop neighbors by using cooperative redundancy
elimination method. Router periodically exchange the informa-
tion with one hop neighbors to eliminate the contents duplica-
tion that creates extra traffic in the network. Classical hashing
is also used in [6] [7] [8] for caching purpose and it can reduce
extra message exchanging to eliminate the duplicated contents
and forwarding. Although, classical hashing is lightweight and
efficient, but it suffers from consistency and load balancing
problems.

141978-1-5090-1724-9/16/$31.00 ©2016 IEEE ICOIN 2016

Fig. 1. System Model: where C is the core router and A is the access router.
Core routers are connected with Internet/content server. The access routers are
connected with users.

The prefetching technique is widely used in different areas.
Several issues of the prefetching is clearly mentioned in
[16] such as cache pollution problem and wasted Prefetches
problem. Basically, there are two types of prefetching tech-
niques, synchronous (prefetch the chunks when chunk i miss
) and asynchronous (prefetch several sequence of chunks when
hitting the chunk i).

In this paper, we propose a mechanism to improve the
cache space utilization and also to reduce the delay to get the
contents or chunks. There are two parts of Caching, forwarding
and cache replacement schemes proposed in this paper: for
Core Router (CR)s and for Access Routers (AR)s. For the
case of CR, we use the scheme which is based on [13] [14],
where consistent hashing is applied as a base frame for the
caching and forwarding process of CR. Then we improve
the CR’s cache decision, in order to work together with the
cache replacement, where the cache decision in [13] [14]
works independently with cache replacement and it affects
the performance and stability. As the main proposal for this
paper, the prefetching scheme is proposed for AR, where
prefetching technique improves the cache hit probability and it
can provide better service to the users by fetching the contents
before requested by users. As a result, CRs can keep non-
duplicated contents in their cache and also it can forward the
unsatisfying requests directly toward the custodian routers1,
instead of flooding the requests to find the contents. In addition,
the latency to get the contents is also reduced because of
prefetching technique.

Our contribution in this paper can be summarized as
follows.

• The cache decision for CRs is proposed for working
together with cache replacement.

• The adaptive prefetching algorithm for ARs is pro-
posed, in order to improve the cache hit rate and
reduce the latency to get the chunks.

• The proposed scheme is evaluated by using ccnSim
[15].

1The predefined routers that store relevant contents and those contents are
filtered by using consistent hash ring.

Fig. 2. The illustration of overview forwarding Process: If the router is not
an CR or AR, the router will skip searching the contents in its CS.

Rest of the paper is organized as follow. Section II dis-
cusses system model while the overview process of the pro-
posed scheme is explain in III. The cache decision process of
core router is presented in IV. Adaptive prefetching algorithm
been used in AR is discuss in section V-A. The proposed
scheme is evaluated in the section VI. Finally the paper is
concluded in section VII.

II. SYSTEM MODEL

A system model of the proposed scheme is shown in
Fig.1. The Core Routers (CR), Access Routers (AR) and
users are located inside one Autonomous System (AS). The
content servers are located at the outside of the AS. The white
routers are the CRs (from C1, C2, ...Cn) and the green routers
and circles are the ARs from A1, A2, ...An. Only the CR
are grouped together by the system administrator and ARs
are connected with CRs. The ARs are located in different
geographical location and that are connected with CRs via
fiber optic line(S). Users are connected with ARs and their
requests first received by these ARs.

III. OVERVIEW PROCESS

The overview process of the proposed scheme is as follow.
CRs are formed as a group, possess the key range (0, 1, 2...k)
and each key represents one virtual router. One physical CR
can possess several random keys or virtual routers, depending
on the capacity of physical cache size. Several random keys
are assigned to each physical core router and a consistent hash
ring map is constructed. Then, Interest is forwarded directly
to the custodian router by using consistent hash ring map.

The illustration of forwarding process can be found in
Fig.2, where AR is the first router that receives Interest from
users. Then the CR is categorized into two types of the router:
Custodian and Non-Custodian CR. If the requested content
is cached in AR, the content is replied directly to the user
and also the prefetching Interest is forwarded to the CRs
depending on the popularity of the satisfied chunks. If the
requested content is not located at the AR, unsatisfying Interest
and also the prefetching Interest(s) are forwarded to the CRs
depending on the popularity of the unsatisfying chunk. When
the unsatisfying or prefetching Interest arrives at the CR, if the
CR is the Custodian then the requested content is searched in
its CS. If the requested content is found, reply the chunk to the

142

AR. Otherwise, the Interest is forwarded to the another AS or
origin server. If CR is not the Custodian, Interest is forwarded
directly to the Custodian router. So, the benefit is that, if the
CR is not a Custodian router, CR can skip the CS checking
for the incoming Interest.

Algorithm 1 Core Router Cache Decision
1: On arrival of the requested chunk at router, check the CB
2: if CB is 0 then
3: Drop incoming chunk to store and relay chunk to the

requested router(s)
4: end if
5: if CB is 1 then
6: if The cache space is free then
7: Cache the chunk
8: else {Hint : The cache space is full}
9: Compare the value of the chunks

10: if Incoming chunk < cached chunk then
11: Drop incoming chunk to store and relay chunk to

the requested router(s)
12: else {Hint : Incoming chunk > cached chunk}
13: Cache the chunk in CS and also relay the chunk

to the requested routers
14: end if
15: end if
16: end if

IV. CORE ROUTER’S CACHE DECISION PROCESS

The cache decision process includes two steps. The first
step is to know whether the current router is the custodian
or not. If the current router is the custodian router, the router
makes a decision (store or not store the chunk) by using the
second step. The cache decision algorithm is shown in 1.

The first step is very simple, the router can know whether it
is a custodian of the incoming Data chunks or not by checking
Cache Bit (CB) field which is located in the PIT and CB value
is updated by the forwarding process. If the CB value is 1,
the incoming chunks are considered for caching by the router
cache by using the second step. If the CB is 0, the incoming
chunks will not be cached on current router cache.

For the second step, we combine the caching and replace-
ment policy. There are two possible cases; the cache space of
the CR is full or free. All the chunks that have CB value 1 are
cached when the cache space of the CR is free. If the cache
space of the CR is full, CR needs to replace the incoming
new chunks with old chunks inside the cache. In order to
do that, the router compares the value of incoming chunks
and the chunks already cached in the cache. If the incoming
chunk’s value is higher than the chunks that are in the cache.
Then, the incoming chunk is stored. At the same time, the old
chunks in the cache are deleted. By this way, CRs eliminate
the duplicated chunks without affecting the cached redundancy
and effectively use the cache space.

V. ACCESS ROUTER FORWARDING AND CACHING
PROCESS

The forwarding process of the ARs is very simple. Each
AR just forwards the unsatisfying Interest toward the CR.

Fig. 3. Pre-fetching process: when the occurrence of the i (where 0, 1, ...)
chunks miss, router pre-fetch the i + θ (where θ = 3) into its cache. If the
trigger chunk hit occur, router pre-fetch the chunk sequence block depending
on the trigger range.

Fig. 4. The illustration of the Prefetching module(the green blocks) which
includes Decision Maker and Interest Generator module.

Therefore, we will not discuss AR’s forwarding as sub section.
Major contribution in this section is the adaptive prefetching
algorithm, which initially fetch the chunks one by one and
latter, fetch the sequences of chunks (a group of chunks) when
hitting the triggered chunks. The detailed discussion is given
in section V-A.

First of all, we would like to discuss an overview of the pre-
fetching technique. Pre-fetching is the technique to fetch some
segments or some chunks of the content before been requested
by the user(s). This technique can provide better service to
the user(s) when they use delay sensitive application(s) (eg.
watching video etc.). However, on the other hand, deployment
of perfecting in the network can be faced with two major
problems [16]. First one is the cache pollution problem, where
it is defined as the case when the most useful chunks from the
cache are replaced with pre-fetched chunks. Second problem
is, the wasted pre-fetches, i.e., the case when the chunks
are pre-fetched too early or too late and that lead the cache
pollution and generates huge traffic inside the network.

Then, we propose the prefetching module which is shown
in 4 for the AR and it includes decision maker module and
Interest generator module. Decision maker module makes a
decision whether to start the prefetching for the content or
not by using the information from the statistical module and
Interest generator generates the Interest to fetch the chunks
before requested by the users. Statistical module collects the
statistical information such as a number of hit and number of a
miss for each chunk of the contents. The prefetching algorithm
which is used in prefetching module will be discussed in
section V-A.

A. Adaptive Prefetching Algorithm for Access Router

In this paper, the prefetching technique is only applied
on the ARs, these are connected and located at the nearest
place from the users. Instead of pre-fetching every chunk,
our algorithm only fetches the popular contents, in order to
reduce the cache pollution problem or to prevent the replacing
of popular chunks with non-popular chunks. Every AR, is
measuring local popularity by using the statistical module

143

Algorithm 2 Adaptive Pre-fetching and Cache Replacement
1: if # of

∑
reqni (t) > σ then

2: Fetching process is started
3: if chunk i of content n miss then
4: request the i and i+ θ chunks
5: when the requested chunk i and i+θ chunks is arrived
6: Relay the chuk i
7: if i==θ − 1 then
8: Set i+ θ chunk as trigger chunk
9: end if

10: if Cache space is free then
11: Store the i+ θ in the cache
12: else
13: the i+θ chunk is replaced with LRU position chunk

and added at the MRU position
14: end if
15: end if
16: if hitting the chunk h (trigger chunk) then
17: Request the sequence of chunks from i+ 1 to i+ g
18: where, g=�Inij/RTTn

i �
19: end if
20: end if

(which keep track of the hitting and missing of contents). The
pre-fetch range and trigger range, these terminology are widely
used in the prefetching, also play an important role in pre-
fetching. The wasted pre-fetch and cache pollution problems
are solved by tweaking these values. The pre-fetch range is the
range to fetch the chunks after cache miss occurs. The trigger
range is the number to generate the Interest after cache hit
occurs. The trigger range setting depends on the demand for
the contents.

For example, in Fig.3, the pre-fetching range is defined
as θ (where θ = 3), router will fetch the i + θ chunk where
request of chunk i faces a miss. When the θ value is too high,
some chunks may be deleted before assessing. By this way,
the chunks are fetched on router cached before accessed by
the users. Then, we apply the trigger chunks concept, where
the occurrence of the hit on that trigger chunks, the router
generates Interests to fetch the group of chunks, in order to
balance the demand and response. The number of Interest to
generate is depending on the value of g, which is the trigger
range.

For instance, in the figure chunk number 5 (i.e.2 + θ) has
been chosen as a trigger chunk because it is the last chunks
for the prefetching. When hitting the trigger chunk, the router
will generate g. The trigger range g is calculated according to
equation 1.

The proposed adaptive prefetching and cache replacement
is presented in in algorithm 2. In the algorithm, line 1 is to
check whether the chunks is popular or not, where σ is the
threshold (real number) and

∑
reqni (t) is the number of total

request for the chunk i of content n. If the chunk is popular the
fetching process is started for content n. Otherwise, just relay
the chunk. When the fetching process is started, the router will
request the chunk i and also chunk i+θ (e.g i = 0, θ = 3). The
router will store only the chunk i+ θ and relay the chunk i to
requested users. Line 7 shows how to choose the trigger chunk,
where i +m is set as trigger chunk. When trigger chunk hit

TABLE I. PARAMETERS USED IN THE EXPERIMENTS

Parameters Symbol Value
No. of repos |r| 1

No. of replicas |m| 1
No. of clients |c| 9
Arrival rate λ 100

file size |F | 1
Zipf exponent α 0.9,1,1.1

Object size oi 108

Cache decision DS CH(normal), Hybrid, LCE, LCD, PROB
Cache replacement RS Hybrid(deterministic), LRU

Forwarding FS CH,NRR , NRR1, SPR
Cache size CS 5% of object size

TABLE II. STRATEGIES USED IN THE EXPERIMENTS

Strategies Description
Leave Copy Everywhere (LCE) Store all incoming chunk passing

through the routers.
Leave Copy Down [17] (LCd) Chunks will store at the down stream

router of the hitting router.
Probabilistic Caching [11] (Prob-Cache) Routers closer to the user have higher

probability for caching the chunks.
Nearest Replica Routing(NRR) Flooding Interest to the neighbor

routers. If found reply the chunks.
If the request time out, forward the
Interest to the nearest content source.

Nearest Replica Routing(NRR1) Flooding the Interest again and again.
If the chunks is found, return to the
requesters.

Least Recently Used (LRU) Replaces the least recently used item
with new incoming chunk.

occurs, the router will fetch the i+1 to i+g (e.g. i = 6, g = 3).
In the algorithm, g is calculated as

g = �Inij/RTTn
i � (1)

where Inij is the Interest arrival of content n and RTTn
i is

the round trip time to get chunk i of content n.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the proposed scheme by
extending the chunk-level simulator, ccnSim [15] which is
develop under Omnet++ simulator. Then, the proposed scheme
is analyzed by deploying homogeneous group size, hetero-
geneous cache size, and the same delay. First, we discuss
the configuration of the simulation environment. Secondly, we
choose the performance metrics to compare the results of our
proposed scheme with other. The final part is the discussion
of the simulation results.

A. Configuration

The topology used in the simulation consists of four groups
and each group located in the different geographic region.
The core router group is connected with the outside of the
network, in this scenario, it is connected with the content
server. Three groups are connected with users. Then, we
consider the catalog size of the contents that are kept at the
content server, chose YouTube likes catalog size 108 which is
also used in [18] [19] and the size of the contents on average
are 10MB as in [20]. Also, the cache size of the router is
assigned, heterogeneous cache size for the whole network with
0.1% and 5% of the catalog size is assigned. For the simplicity,
we consider topologies with uniform delay (1ms). Then, we

144

Fig. 5. Comparison of probability hit between proposed scheme (Hybrid)
and others

assume the links are non-congested and with the infinite band-
width. So, the network delay matches the propagation delay
of each link. Object popularity follows the Zipf distribution
probability equals P (X = i) = 1/iα

c with C =
∑|F |

j=1 1/j
α

where i is the rank of the i-th object, and we further denote
Πi =

∑i
j=1 P (X = j) as the cumulative percentage of

requests directed to the set of i most popular objects. We
consider the object popularity follow a zipf distribution with
(α=0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5). The requests arrival follow
the Poisson process, P {N(t) = n} = (λt)n

n! e−λt. Simulation
start from empty caches and statistics are gathered after the
hit ratio reaches steady state.

B. Performance Metrics

CCN reduces the network traffic as well as the latency for
the users. Typically, the performance of the cache is measured
in terms of the probability that the chunks of Interest is found
at a given CS. The probability of hit which measures the hit and
miss probability in order to know how much traffic network
can reduce. On the other hand, it can measure the server hit
probability which represents the traffic pass through to the
outside of the network. The probability of the hit is calculated
by the following equation,

δ =
ν

ν + ζ
(2)

,

where, δ is the probability of hit, ν is the total number of
the hit for the whole network and ζ is the total number of the
miss for the whole network. Also, the hit distance, the number
of hops Interest travels before hitting a copy of the requested
chunk, is also important to measure the performance. The hit
distance roughly reflects the overall load on the network and
the end users delay and also a user centric-metric, beyond
the usual cache hit and miss probability, directly relates to
users QoE (i.e., delay) as well as network QoS (i.e., load and
cache hit). The average distance is calculated by the following
equation,

Fig. 6. Comparison of hit distance between proposed scheme (Hybrid) and
others

davg =

∑
mi ∗ d+ h∑
mi + 1

(3)

,

D =
Davg

|c|
(4)

. where, davg is the average distance or average number of
hops to get the contents,

In addition, measure the latency to download the contents
from the user side and it is calculated by using the following
equation,

κ = ϕ ∗ 1
|c|

(5)

, where, ϕ is the global average delay and |c| is the number of
clients. Finally, to measure the performance of our proposed
scheme, we choose five performance metrics (probability of
hit, hit distance, inner hit, average delay, and cache diversity).

C. Simulation Results

Network Centric Performance : Fig.(5) shows CCN perfor-
mance in the chunk level hit rate. As we expected, hit rate of
all schemes are increased when we increase the Zipf parameter
α from (0.9 to 1.5). In the figure, our proposed scheme clearly
outperforms the others because of adaptive pre-fetching, which
requests the content before receiving the user(s) request. LCE
and LCD results are lower than ours because these policies
cache the content after the cache miss occurs.

Client Centric Performance Hit distance: Fig.(6). shows hit
distance measurement, i.e., how many hop the request need to
forward to satisfy the request. The lower the hit distance the
better the performance. The figure shows hit distances for all
the schemes are almost the same.

Average delay: The comparison of average delay is shown
in fig.(7). Average delay shows a kind of round trip time from
sending Interest and receiving Data. In this figure, the average

145

Fig. 7. Comparison of average delay between proposed scheme (Hybrid) and
others

delay to get the data of our proposed scheme is outperforming
other because of the pre-fetching technique.

VII. CONCLUSION

In this paper, we proposed a scheme to store the contents
with the combination of cooperative and adaptive prefetching.
Aim of the proposal in this paper is to enable the user to get
the requested content quickly. We have used a modified version
of LRU in the core routers for content replacement in order
to give more priority to the popular contents to be cached.
Furthermore, the proposed forwarding scheme forwards the
requests directly to the custodian router without flooding the
requests. As a result, the proposed scheme can improve not
only the cache hit but also the hit distance and average
delay to download the contents. We intensively simulated the
proposed mechanism. The experimental results show that for
our proposed mechanism, the cache hit is higher and the
average waiting time to get the content is lower than other
similar proposals in the literature.

ACKNOWLEDGMENT

This research was funded by the MSIP(Ministry of Science,
ICT & Future Planning), Korea in the ICT R&D Program
2015. *Dr. CS Hong is the corresponding author

REFERENCES

[1] http://www.cisco.com/c/en/us/solutions/service-provider/visual-
networking-index-vni/index.html.

[2] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass,
Nicholas H Briggs, and Rebecca L Braynard. Networking named
content. In Proceedings of the 5th international conference on Emerging
networking experiments and technologies, pages 1–12. ACM, 2009.

[3] Cheng Yi, Alexander Afanasyev, Lan Wang, Beichuan Zhang, and
Lixia Zhang. Adaptive forwarding in named data networking. ACM
SIGCOMM computer communication review, 42(3):62–67, 2012.

[4] Michele Tortelli, Luigi Alfredo Grieco, Gennaro Boggia, and K Pen-
tikousisy. Cobra: Lean intra-domain routing in ndn. In Consumer
Communications and Networking Conference (CCNC), 2014 IEEE 11th,
pages 839–844. IEEE, 2014.

[5] Shuo Guo, Haiyong Xie, and Guangyu Shi. Collaborative forwarding
and caching in content centric networks. In NETWORKING 2012, pages
41–55. Springer, 2012.

[6] Zhe Li and Gwendal Simon. Time-shifted tv in content centric
networks: The case for cooperative in-network caching. In Commu-
nications (ICC), 2011 IEEE International Conference on, pages 1–6.
IEEE, 2011.

[7] Lorenzo Saino, Ioannis Psaras, and George Pavlou. Hash-routing
schemes for information centric networking. In Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking, pages
27–32. ACM, 2013.

[8] Sen Wang, Jun Bi, and Jianping Wu. Collaborative caching based on
hash-routing for information-centric networking. In ACM SIGCOMM
Computer Communication Review, volume 43, pages 535–536. ACM,
2013.

[9] Nikolaos Laoutaris, Sofia Syntila, and Ioannis Stavrakakis. Meta
algorithms for hierarchical web caches. In Performance, Computing,
and Communications, 2004 IEEE International Conference on, pages
445–452. IEEE, 2004.

[10] Jason Min Wang and Brahim Bensaou. Progressive caching in ccn. In
Global Communications Conference (GLOBECOM), 2012 IEEE, pages
2727–2732. IEEE, 2012.

[11] Ioannis Psaras, Wei Koong Chai, and George Pavlou. Probabilistic in-
network caching for information-centric networks. In Proceedings of the
second edition of the ICN workshop on Information-centric networking,
pages 55–60. ACM, 2012.

[12] Jason Min Wang, Jun Zhang, and Brahim Bensaou. Intra-as cooperative
caching for content-centric networks. In Proceedings of the 3rd ACM
SIGCOMM workshop on Information-centric networking, pages 61–66.
ACM, 2013.

[13] Kyi Thar, Saeed Ullah, and Choong Seon Hong. Consistent hashing
based cooperative caching and forwarding in content centric network.
In Network Operations and Management Symposium (APNOMS), 2014
16th Asia-Pacific, pages 1–4. IEEE, 2014.

[14] Kyi Thar, Thant Zin Oo, Chuan Pham, Saeed Ullah, Doo Ho Lee, and
Choong Seon Hong. Efficient forwarding and popularity based caching
for content centric network. In Information Networking (ICOIN), 2015
International Conference on, pages 330–335. IEEE, 2015.

[15] Giuseppe Rossini and D Rossi. ccnsim: an highly scalable ccn simulator.
In IEEE ICC, 2013.

[16] Binny S Gill and Luis Angel D Bathen. Amp: Adaptive multi-stream
prefetching in a shared cache. In FAST, volume 7, pages 185–198,
2007.

[17] Nikolaos Laoutaris, Hao Che, and Ioannis Stavrakakis. The lcd
interconnection of lru caches and its analysis. Performance Evaluation,
63(7):609–634, 2006.

[18] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and
Sue Moon. I tube, you tube, everybody tubes: analyzing the world’s
largest user generated content video system. In Proceedings of the
7th ACM SIGCOMM conference on Internet measurement, pages 1–14.
ACM, 2007.

[19] Giuseppe Rossini and Dario Rossi. A dive into the caching performance
of content centric networking. In Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), 2012 IEEE 17th
International Workshop on, pages 105–109. IEEE, 2012.

[20] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti.
Youtube traffic characterization: a view from the edge. In Proceedings
of the 7th ACM SIGCOMM conference on Internet measurement, pages
15–28. ACM, 2007.

146

