
Cross-Silo Model-Based Secure Federated Transfer
Learning for Flow-Based Traffic Classification

Umer Majeed, Sheikh Salman Hassan, Choong Seon Hong
Department of Computer Engineering

Kyung Hee University
Yongin, South Korea

{umermajeed, salman0335, cshong}@khu.ac.kr

Abstract—Traffic classification is crucial for autonomous net-
work management. Deep learning-based traffic classification
methods are in demand because of their ability to accurately
classify even encrypted traffic. Federated learning is a way to
collaboratively train learning models with privacy-preservation.
Transfer learning allows learning models to share knowledge
between tasks from different but related domains. Federated
Transfer Learning allows collaborative training of privacy-
preserving models with knowledge sharing from source to target
domains. In this paper, we did secure federated transfer learning
for improvising the training-time and accuracy of the target-
federated-model for traffic classification. The target-federated-
model outperforms the baseline-federated-model trained from
scratch. We implemented a simple cross-silo secure aggregation
protocol for security.

Index Terms—Cross-Silo, Federated Learning, Federated
Transfer Learning, Horizontal Federated Learning, Tensorflow
Federated, Transfer Learning, Secure Aggregation

I. INTRODUCTION

Traffic classification is the process to categorize network
traffic into relevant classes. With the emergence of bandwidth-
intensive services [1], traffic classification has a significant role
in network traffic engineering [2]. Traffic classification is a
prerequisite for malware detection, intrusion prevention, price
adjustment, resource management, and maintaining the quality
of service (QoS) [3].

Traffic classification allows enterprises to ensure compli-
ance with enterprise network usage policies. Virtual Private
Network (VPN) technology allows secure encrypted data
transmission between enterprises and individuals (employees).
However, VPN encryption poses an obstacle to traditional
traffic classification schemes. Deep learning enabled flow-
based traffic classification schemes are admired for their ability
to accurately classify normal traffic, but also VPN encrypted
traffic without explicit feature search.

Few organizations may collaborate to build a traffic classi-
fication model, but the sharing of raw traffic data has privacy
and security concerns. To mitigate these issues, Federated
Learning (FL) [4], [5], [6], [7] provides a way to conjointly
learn a common model without centralizing the raw data.
Because of the changing network traffic dynamics and usage
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of new applications in the network [8], [9], existing traffic
classification models may become obsolete. Transfer Learn-
ing allows the learning knowledge to transfer between models
and then quickly adapt to a new domain without starting
the learning from scratch. Federated Transfer Learning not
only allows the knowledge sharing between source and target
domains but allows collaborative training of learning models
without transferring users’ data to the cloud server.

Cross-Silo Horizontal Federated Learning allows enter-
prises/ organizations or silos to train collaborative models
where the datasets of silos have a lot of overlapping features.

In this study, we did model-based federated transfer learning
for traffic classification where the source and target models
are trained in cross-silo horizontal federated learning settings
using cross-silo secure aggregation protocol.

The contribution of this paper is highlighted below:

• We propose and devise a cross-silo model-based federated
transfer learning scheme for traffic classification based on
supervised feature-based deep learning.

• We train a source-federated-model for application-level
traffic classification (e.g. P2P, VoIP, VPN-P2P, etc) based
on flow-based time-related features in a cross-silo hori-
zontal federated learning configuration.

• We transfer the weights from the source-federated-model
to the target-federated-model. Where the target-federated-
model is further train afterward for VPN\non-VPN iden-
tification as binary classification. The target model train-
ing is done based on flow-based time-related features in
a cross-silo horizontal federated learning configuration.

• The target-federated-model outperforms the baseline
model for both validation accuracy and training-time
efficiency.

• We applied the cross-silo secure aggregation technique
for security and privacy-preserving federated learning.

The rest of the paper is organized as follows: Section II
gives a brief overview about federated learning and transfer
learning. The system model is presented in Section III fol-
lowed by the problem formulation in Section IV. Section V
describes the employed secure aggregation protocol for cross-
silo federated learning. Section VI describes the dataset used.
Section VII gives simulation results. Section VIII concludes
our work.
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II. PRELIMINARIES

A. Federated Learning

Federated learning [10], [11], [12], [13] is a privacy-
preserving distributed machine learning process to train a
shared model from distributed datasets with more computation
at the edge. For each global iteration, the federated learning
server aggregates local model updates from learners to update
the global model. We will briefly formulate the federated
learning process [14] below:

Consider a neural network that classifies the input data to C
classes. The input data has compact Euclidean feature space X
mapped on the label space Y = [C], where [C] = {1, ..., C}.

The cross-entropy loss for a datapoint {x, y} with one-hot
encoded label is given as [15]

fr(w) = −
C∑

q=1

1y=q log pq(x,w). (1)

Where, the probability of x ∈ X being mapped to class q is
denoted as pq(x,w). while w denotes the weight matrix for
the artificial neural network (ANN). The local loss Fk can be
written as

Fk(w) =
1

nk

∑
r∈Dk

fr(w). (2)

where Dk is dataset of kth client and nk = |Dk| are number
of samples in Dk. Then the local gradient is determined as

gk = ∇Fk (wt) where δk = |Dk| gk. (3)

At global iteration t+1, the local model weights are updated
as

wk
t+1 ← wt − ηgk, ∀k. (4)

The overall global loss in federated learning settings is
calculated as

f(w) =
∑
k∈ψ

nk

n
Fk(w). (5)

Where ψ is the set of federated learning clients. Then global
gradient is determined as

∇F (wt) =
∑
k∈ψ

nk

n
gk =

∑
k∈ψ δk∑

k∈ψ|Dk|
. (6)

At global iteration t + 1, the global model weights are
updated using Federated averaging (FedAvg) [10] as

wt+1 ←
∑
k∈ψ

nk

n
wk

t+1 (7)

or
wt+1 ← wt − η∇F (wt) . (8)

The overall purpose is to minimize the global loss during
federated learning process as:

min
w

f(w). (9)

B. Transfer Learning

Transfer learning facilitates the reuse of the experience
from the source domain to another related target domain to
quickly adapt to the target domain or task. There are several
transfer learning schemes such as instance-based, feature-
based, model-based, related-based transfer learning [16]. Here,
we will briefly describe model-based transfer learning only.

In Model-based Transfer Learning, parameters or hyper-
parameters of learning models from the source domain, are
assigned to the parameters or hyper-parameters of learning
models in the target domain. So, the pre-trained models can be
employed in whole or part as initial weights of target models
[16]. Afterward, the target model is further trained as per the
target domain.

III. SYSTEM MODEL

A federation O has two organization I, J ∈ O = {I, J}.
Another federation P has two organization K,L ∈ P =
{K,L}.

Organization I has dataset DI having sample space ZI =
(XI ,YI) and organization J has dataset DJ having sample
space ZJ = (XJ ,YJ).

Organization K has dataset DK having sample space ZK =
(XK ,YK) and organization L has dataset DL having sample
space ZL = (XL,YL).

Where Xγ is feature space, Yγ is label space, and γ ∈
{I, J,K,L}.

Data-sets DI and DJ have different sample space. However,
the feature space and label space pair of these two datasets i.e.,
(XI ,YI) and (XJ ,Yj) is same. Formally [17]

XI = XJ , YI = YJ , ZI �= ZJ , DI �= DJ , I �= J (10)

Similarly, datasets DK and DL have different sample space.
However, the feature space and label space pair of these two
datasets i.e., (XK ,YK) and (XL,YL) is same. Formally [17],

XK = XL, YK = YL, ZK �= ZL, DK �= DL (11)

where K �= L (12)

Fig. 1 illustrates the system model.
Organization I and J collaboratively trains a source-

federated-model MF
S , while MF

I and MF
J symbolize the local

models trained in federated learning setting on DI and DJ

respectively. These entities are indicated in the source module
in the system model.

Similarly, organization K and L collaboratively trains a
target-federated-model MF

T , while MF
K and MF

L symbolize
the local models trained in federated learning setting on DK

and DL respectively. These entities are indicated in the target
module in the system model.
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Fig. 1. Cross-Silo Model-based Federated Transfer Learning

IV. PROBLEM FORMULATION

In this section, we formulate our federated transfer learning
problem corresponding to the system model in Section. III.
We have the same feature space of source and target domain
dataset. However, the label space of target domain and source
domain datasets is different. Formally,

XS = XT , YS �= YT , DS �= DT , S �= T (13)

where S ∈ {O = {I, J}} and T ∈ {P = {K,L}} (14)

For source domain DS , We have source task TS =
{YS , ḟ

F
S (x; θS)}. Where ḟF

S (x; θS) is the source predictive
function from feature space XS to label space YS for source-
federated-model MF

S and θS denotes the weight matrix for
MF

S .
Similarly, for target domain DT , We have target task TT =

{YT , ḟ
F
T (x; θT )}. Where ḟF

T (x; θT ) is the target predictive
function from feature space XT to label space YT for target-
federated-model MF

T and θT denotes the weight matrix for
MF

T .
Let G be set of layers set as freezed in target-federated-

model MF
T . θSg denotes the weights of gth layer of source

model and θTg denotes the weights of gth layer of target model.
After the trained source model is available from the source
domain, we can assign the weights to the target model MF

T

as

θTg = θSg , ∀g ∈ G (15)

We formulate our federated transfer learning problem as:
given source domain DS with source task TS and target

Algorithm 1: Procedure for model-based secure Fed-
erated Transfer Learning - Source Module

1 Initiate MF
I , MF

J , MF
S via TS = {YS , ḟ

F
S (x; θS)}

2 for u ∈ {1, 2, 3, ..., ÎGS } } do
3 update MF

I on DI using Eq. 4
4 update MF

J on DJ using Eq. 4
5 apply secure aggregation protocol - Section V-A
6 aggregate MF

I and MF
J using Eq. 7 and secure

aggregation protocol (Section V-A) to get MF
S

7 Send MF
S to Target Module (Algorithm. 2 )

Algorithm 2: Procedure for model-based secure Fed-
erated Transfer Learning - Target Module

1 Initiate MF
K , MF

L , MF
T via TT = {YT , ḟ

F
T (x; θT )}

2 for {g ∈ G} do
3 assign θTg = θSg for MF

I , MF
J , MF

S

4 for v ∈ {1, 2, 3, ..., ÎGT } do
5 update MF

K on DK using Eq. 4
6 update MF

L on DL using Eq. 4
7 apply secure aggregation protocol - Section V-A
8 aggregate MF

K and MF
L using Eq. 7 and secure

aggregation protocol (Section V-A) to get MF
T

9 deploy target federated transfer model MF
T

domain DT with target task TT , increase the learning accuracy
of ḟF

T (x; θT ) in DT and decrease corresponding training time
tT using the knowledge from DS and TT , where,

DT �= DS , TS �= TT , S �= T, (16)

and source-federated-model MF
S and target-federated-model

MF
T are trained in cross-silo horizontal federated learning

settings. Algorithm. 1 and Algorithm. 2 shows the procedure
for model-based federated transfer learning for source and
target module respectively.

V. SECURITY FOR CROSS-SILO FEDERATED LEARNING

For secure federated learning, we have employed secure
aggregation protocol which is described below:

A. Secure Aggregation

In a cross-silo federated learning setting of the source
module with federation O, we consider a secure and reliable
communication channel between organization I and J as
well as between organizations and federated learning server.
Considering Eq. 6 and Eq. 8, The organization I and J have
to just share 〈 |Dk| , δk〉 for aggregation of local models to
compute the global model update. Here we formulate our
simple secure aggregation protocol [18].

Consider that organization u ∈ O holds private vector eu
with dimension d. Where eu,

∑
u∈O eu ∈ Rd. Where, R is set

of real numbers.
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Each organization u ∈ O agree on matched pair of masked
perturbation for every other organization v ∈ O , that is bu,v
and bv,u are uniformly sampled from (−R,R)d, where R is
some threshold. The organization exchange bu,v and bv,u over
secure channel. Afterwards, they compute au,v = bu,v − bv,u.
where au,v = −av,u and av,u = 0 when v = u.

Every organization sends masked vector hu = eu +∑
v∈O au,v to the server. The server aggregates masked vectors

to compute unmasked aggregated vector as

ē =
∑
u∈O

hu =
∑
u∈O

eu +
∑
u∈O

∑
v∈O

au,v =
∑
u∈O

eu+

∑
u∈O

∑
v∈O

bu,v −
∑
u∈O

∑
v∈O

bv,u =
∑
u∈O

eu (17)

The secure aggregation scheme above is used for computing
the global model at each global iteration. For the target
module, the same scheme is applied.

VI. DATASET

A. Dataset Details

The dataset we engage for our federated transfer learning-
enabled traffic classification is a publicly available UNB ISCX
VPN-NonVPN network traffic dataset [19]. This dataset is
designed by the Research Center of the University of New
Brunswick in Canada. The dataset has time-related features
for flow-based traffic data with labeled classes. The dataset
has four timeout intervals (120s, 60s, 30s, 15s). Table. I briefly
describes these features.

1) Scenario A: Scenario A dataset distinguishes the traffic
secured using VPN and non-VPN network traffic. This sce-
nario has two classes i.e. VPN and Non-VPN.

2) Scenario B: The primary objective of scenario B is to
differentiate the traffic type besides VPN-non VPN recog-
nition. This scenario has fourteen traffic classes namely
BROWSING, CHAT, STREAMING, MAIL, VOIP, P2P,

TABLE I
LIST OF TIME-RELATED FLOW-BASED FEATURES [19]

Feature Details

duration The flow’s duration.
fiat Forward Inter Arrival Time indicates the time duration

amid two packets transmitted in the forward direction
(min, max, mean, std).

flowiat Flow Inter Arrival Time indicates the time duration
between two packets transmitted in either direction (min,
max, mean, std).

biat Backward Inter Arrival Time indicates the time duration
amid two packets transmitted in the backward direction
(min, max, mean, std).

idle The time span a flow was idle prior to going into active
state(min, max, mean, std).

active The time duration a flow was active prior to going into
idle state(min, max, mean, std).

fp-psec Number of Flow Flow packets transmitted per second.
fb-psec Number of Flow Bytes transmitted per second.

FT, VPN-VOIP, VPN-CHAT, VPN-STREAMING, VPN-FT,
VPN-BROWSING, VPN-P2P, and VPN-MAIL.

B. Data Preprocessing

For data preprocessing, we first separated the data based
on timeout. Since, time-related features have a high positive
correlation with timeout interval, we later performed the z-
score normalization for each timeout separately. The z-score
is performed on all the time-related flow-based features except
for the encoded label.

z =
x− µ

σ
(18)

where z denotes the z-score, x denotes the raw datum, µ
denotes the mean and σ is the standard deviation.

C. Splitting

The 20 percent of the dataset is assigned as a DV (validation
dataset). The validation dataset is publicly accessible without
any secrecy issues. The rest of 80 percent of the dataset is
evenly divided between the two organizations in each module.

Specifically, for the source task, 80% of scenario B dataset
is equally divided between organization I and J , and 20% is
used as DV . Similarly, for the target task, 80% of scenario A
dataset is equally divided between organization K and L, and
20% is used as DV . Corresponding DV is used for validation
of all related models.

VII. SIMULATION RESULTS

We use Tensorflow Federated (TFF) [20] for federated
learning while the Tensorflow Keras library was used for
learning transfer from source to target module. We used

TABLE II
SOURCE-FEDERATED-MODEL MF

S AND TARGET FEDERATED
MODEL MF

T - LAYERED ARCHITECTURE

source-
federated-
model MF

S

target-federated-
model MF

T

Sr Layer Activation Value Value Trainable/
non-
Trainable

1 Input - (23,) (23,) -
2 Dense Relu 512 512 non-

Trainable
3 Dense Relu 512 512 non-

Trainable
4 Dense Relu 512 512 non-

Trainable
5 Dropout - 0.2 0.2 -
6 Dense Relu 512 512 non-

Trainable
7 Dense Relu 512 512 non-

Trainable
8 Dense Relu 512 512 non-

Trainable
9 Dropout - 0.2 0.2 -
10 Dense Relu 512 512 Trainable
11 Dense Relu 512 512 Trainable
12 Dense Relu 512 512 Trainable
13 Dense Softmax 14 2 Trainable
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callbacks in Tensorflow Federated to implement the secure
aggregation protocol. Tensorflow Federated was released by
Google in March 2019 as an open-source single-machine
federated learning framework.

The layered based-architecture for source model MF
S and

target model MF
T is shown in Table. II. The trainable/ non-

trainable layers for target model MF
T are also specified.

Stochastic gradient descent (SGD) is exploited as an optimizer
during the federated learning process.

Table. III shows the dissemination of data samples between
DI , DJ and DS

V for source module.

TABLE III
DATASET DISTRIBUTION FOR APPLICATION-LEVEL TRAFFIC

CLASSIFICATION - SOURCE-FEDERATED-MODEL

DI DJ DS
V Total

VPN-BROWSING 3961 4039 2000 10000

BROWSING 4025 3975 2000 10000

VPN-CHAT 1119 1152 568 2839

CHAT 1016 988 501 2505

VPN-STREAMING 462 430 223 1115

STREAMING 499 528 257 1284

VPN-MAIL 928 1027 489 2444

MAIL 528 563 273 1364

VPN-VOIP 2249 2212 1115 5576

VOIP 2535 2653 1297 6485

VPN-P2P 1394 1338 683 3415

P2P 1646 1554 800 4000

VPN-FT 1883 1880 941 4704

FT 1637 1543 795 3975

Total 23882 23882 11942 59706

First, the source-federated-model MF
S was trained for 1000

epochs in the source module on DI and DJ in cross-silo
horizontal federated learning settings. In 1000 epochs, the
source-federated-model with maximum validation accuracy
was picked out for further processing. The training and vali-
dation accuracy for source-federated-model MF

S is illustrated
in Fig. 2. The related performance metrics are given in Table.
IV.

TABLE IV
PERFORMANCE METRICS OF MF

S ON VALIDATION DATASET DV

Precision Recall F-1 Accuracy

MF
S 0.85 0.79 0.81 0.83

Subsequently, the weights of layers from source-federated-
model MF

S were assigned to corresponding non-trainable
layers of target-federated-model MF

T . Afterward, the trainable
layers of target-federated-model MF

T were trained on DK and
DL in cross-silo horizontal federated learning settings.

Fig. 2. Training and validation accuracy for source-federated-model MF
S

Table. V shows the dissemination of data samples between
DK , DL and DT

V for target module.

TABLE V
DATASET DISTRIBUTION FOR VPN/ NON-VPN IDENTIFICATION -

TARGET-FEDERATED-MODEL

DK DL DT
V Total

Non-VPN 11872 11818 5923 29613

VPN 12010 12064 6019 30093

Total 23882 23882 11942 59706

As a baseline, the baseline-federated-model MF
B was trained

on DK and DL in cross-silo horizontal federated learning
settings from scratch. The architecture of baseline model MF

B

is the same as of MF
T except that all layers of MF

B are
trainable. The target-federated-model MF

T and baseline model
MF

B were trained for 600 epochs. The models with maximum
validation accuracy were picked out for further processing
using call-backs.

Fig. 3 shows the training and validation accuracy for target-
federated-model MF

T and baseline-federated-model MF
B on

Validation dataset DV . The target-federated-model MF
T gained

maximum validation accuracy of 0.8969 at epoch 595, while
baseline-federated-model MF

B gained maximum validation ac-

Fig. 3. Training and validation accuracy for target-federated-model MF
T and

baseline-federated-model MF
B
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curacy of 0.8530 at epoch 599. We measured the time taken by
MF

B and MF
T for 600 epochs alongside the secure aggrega-

tion protocol. Fig. 4 shows that target-federated-model MF
T

takes less time compared to baseline-federated-model MF
B

for training as there are less number of training parameters
in target-federated-model MF

T . Consequently, time for secure
aggregation of target-federated-model MF

T per global iteration
is also than baseline-federated-model MF

B . Table. VI shows
the corresponding performance metrics.

Fig. 4. Training time for target-federated-model MF
T and baseline-federated-

model MF
B

TABLE VI
PERFORMANCE METRICS OF TARGET-FEDERATED-MODEL MF

T AND
BASELINE-FEDERATED-MODEL MF

B ON VALIDATION DATASET DV

Precision Recall F-1 Accuracy

MF
T 0.91 0.90 0.89 0.90

MF
B 0.86 0.85 0.84 0.85

VIII. CONCLUSION

Network traffic classification is an indispensable component
for intelligent autonomous network management. In this work,
we designed a cross-silo model-based federated transfer learn-
ing scheme for traffic classification. The models are based
on supervised deep learning on feature-based datasets. The
source-federated-model was trained for application-level traffic
classification on time-related flow-based features in cross-silo
horizontal federated learning settings. We assigned the weights
of the source-federated-model to the weights of the target-
federated-model. The target-federated-model is then further
trained in cross-silo horizontal federated learning settings on
the time-related flow-based features for VPN/non-VPN recog-
nition. The target-federated-model outperforms the baseline-
federated-model both in terms of accuracy and training-time
efficiency. Moreover, we applied the secure aggregation pro-
tocol for secure and privacy-preserving federated learning.
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