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Abstract—Prosumer community forms by prosumer who is not
only consuming energy but also generating renewable energy
(e.g., solar) and capable of selling surplus energy to other con-
sumers. Peer-to-peer (P2P) energy sharing behavior of the smart
grid is evolving to reducing the usage of non-renewable energy.
However, non-renewable energy is still used in some time intervals
due to the unbalance between energy load and generation.
Therefore, in this paper, we study an energy scheduling problem
that includes the energy amount for battery charge/discharge
along with energy sharing scheduling among the prosumer
community. First, we formulate an optimization problem and
the objective is to minimize the non-renewable energy usage
of the entire community. This problem includes the day-ahead
energy demand prediction stage and battery charge/discharge,
and energy sharing scheduling stage. Second, to solve the formu-
lated problem, a long-short-term memory (LSTM) and particle
swarm optimization (PSO) joint approach is proposed, in which
the LSTM based model is used to forecast day-ahead energy
demand, while PSO is utilized in the second scheduling stage by
considering P2P behavior. Finally, the evaluation result shows our
proposed LSTM prediction model outperforms the autoregressive
integrated moving average (ARIMA) model by comparing the
mean squared error, root-mean-square error and total training
time. PSO improves the overall usage of non-renewable energy.

Index Terms—Peer-to-Peer, Prosumer Community, Energy
Scheduling, LSTM, Particle Swarm Optimization

I. INTRODUCTION

As the development of smart grid, solar energy generated
prosumer community, in which prosumer can not only play
the role of purchasing energy from the power provider but
also proactive selling excess energy to neighbors in need by
installing rooftop solar panels, known as peer-to-peer (P2P)
energy sharing which is useful for improving energy efficiency
and energy shortage problem. However, solar generation is
uneven due to being affected by the solar intensity which
causes the energy generation can not fulfill the requirement of
each prosumer, namely, mismatch problem between demand
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and generation. To handle such a problem, the battery is
introduced for each prosumer. Obviously, it is necessary and
makes sense to schedule the amount of energy not only by
P2P energy sharing or receiving behavior but also the amount
for battery charge or from discharge.

In recent years, the research in P2P energy sharing area
has attracted increasing attention among various researches
and a number of studies have proposed various methods. For
example, in the study of [1], a non-cooperative game theory
based selfish energy sharing mechanism was presented for
battery and amount of energy sharing scheduling in prosumer
community. The research [2] proposed a game-theoretic based
distributed control schemes which aim to reduce energy cost
for P2P energy sharing. In [3], a model based on game-
theoretic was presented for P2P energy trading in prosumer
community which gained significant financial benefit. Another
example is [4], in which a P2P energy sharing model in-
corporates the energy storage optimization was proposed to
make the lowest coalitional energy cost for all prosumers using
cooperative game theory. However, few researches used deep
learning approaches (e.g. recurrent neural network) in the P2P
energy sharing area. Deep learning approaches nowadays have
gained remarkable success in various areas for the purposes of
prediction [5]. For instance, in the energy consumption area,
convolutional neural network (CNN) was used to forecast at
the level of individual building in the study [6]. GRU based re-
cursive deep learning method was utilized to predict data from
smart meter in [7]. However, these researches only considered
load forecasting aspects but ignored the impact of storage (e.g.,
battery) and energy sharing among the community.

In this paper, unlike previous studies, to achieve the mini-
mum day-ahead usage of non-renewable energy, we compre-
hensively consider energy consumption forecast, scheduling
charge/ discharge of battery and energy sharing with neighbors
for the upcoming day. However, the unpredictable nature and
strong relationship over the history of the energy consumption
[8] causes a big challenge for accurate prediction of energy
demand. As for the energy sharing and battery scheduling
for each household, knowing the optimal value of battery
charge/discharge and energy sharing is another big difficulty.
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To address these challenges, we focus on the approach that
not only forecasts energy demand for the next day but also
optimizes both the amount of battery charge or discharge and
the energy sharing per household within one prosumer com-
munity. The main contributions of this paper are summarized
as follows:

• We formulate a day-ahead energy scheduling problem
and the objective is to minimize the usage of non-
renewable energy of a P2P prosumer community. Where
we schedule the amount of energy charge to or discharge
from battery, and the amount of energy sharing to other
households such that the unbalance between total solar
generation and energy demand can be reduced. How-
ever, due to the formulated problem includes day-ahead
prediction and the amount of battery charge/discharge
and sharing scheduling stage, it is hard to solve such
a problem directly.

• To address the formulated problem, we decompose it into
two-stage: Day-ahead prediction stage and optimization
stage. For the first stage, an intelligent energy prediction
model based on long short-term memory (LSTM) is pro-
posed. In the second stage, particle swarm optimization
based method is proposed to get the best amount of
battery charge or discharge and best quantity of energy
sharing such that to solve the minimization problem of
non-renewable energy.

• Finally, the proposed LSTM model is better than the
ARIMA model with 0.1599 of mean squared error
(MSE), 0.40 of root-mean-square error (RMSE) and
only several minutes of total training time. Scheduling
of battery charge/discharge and energy sharing of each
household shows a significant performance gain, in which
the total energy generation can fulfill all the energy
demands of one prosumer community.

The rest of the paper is organized as follows. Section II
presents the system model and its problem formulation. A
detail discussion of the proposed solution approaches are given
in Section III. The performance analysis is provided in Section
IV, and lastly, Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the proposed system model for the
prosumer community and the related formulation. The detailed
behaviors such as energy sharing, battery charge or discharge,
etc., are also depicted in this section.

A. System Model

The community model is showed as seen in Fig. 1. This in-
cludes power supplier and operator of the power grid, multiple
households, and their connections. Besides, one household has
a solar panel with a battery as the energy storage system, a
smart meter (e.g., Linky [9]) and various energy consumption
appliances such as refrigerator, lighting, washing machine and
the forth.

In this model, on the one hand, the role of smart meter is
to record the energy consumption and provide information to

TABLE I
LIST OF NOTATION

Symbol Meaning
P d

h(t) Energy demand of each household at time slot t
P g

h(t) Energy generation of each household at time slot t
P s

h(t) Amount of each household energy sharing at time slot t
P r

h(t) Amount of each household energy receiving at time slot t
P b,c

h (t) Charge into battery of each household at time slot t
P b,d

h (t) Discharge from battery of each household at time slot t
P b,s

h (t) Battery state of each household at time slot t
Pn

h(t) Non-renewable energy using by each household at time slot t
P l

h(t) Load in per unit time for each household
Pu

h(t) Energy can be used in per unit time for each household
λinv Efficiency of inverter
λc Efficiency of charge
λd Efficiency of discharge

bmin Minimum amount of energy saved in battery
bmax Maximum battery capacity

Fig. 1. System Model

the power supplier and grid operator. On the other hand, it
can communicate with the home energy management system
(HMS). We assume all of the appliances are connected to the
HMS through wired or wireless connections (e.g, Power Line
Communication, Zigbee) [10].

When the generation exceeds the demand, the battery in this
model will be used to save surplus energy. Notably, we assume
that DC/AC inverter is already deployed in HMS. When the
energy is used for load consumption, the inverter is needed by
each household to convert energy type from DC to AC with
an efficiency. However, the energy can be directly used when
it is used for charging battery [1].

In this model, we consider a prosumer community that
consists of a set of households H = {1, 2, ..., H} and
each household has a set of the load that is defined as
L = {1, 2, ..., L}. We also consider a discrete time intervals
T = {1, 2, ..., T} and each time slot t ∈ T is considered as
one hour duration [8]. The details of other symbols in this
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paper are depicted in Table I.
In the case of the frequently used battery, the self-discharge

rate can be ignored every month without any significant errors
[11]. Therefore, this work only considers the charge and
discharge process. Based on these two processes, a binary
decision variable B is needed and its definition is shown as
follows:

B =

{
1, if charge into battery
0, if discharge from battery, (1)

where B = 1 if the battery charge process occurs, and 0,
otherwise.

The amount of energy that saved in the battery P b,s
h at next

time slot can be defined as follows [1],

P b,s
h (t+1)=

{
B(P b,s

h (t)+λinvλcP
b,c
h (t)), ifB = 1,

(1−B)(P b,s
h (t)− P b,d

h (t)

λinvλd
), otherwise.

(2)

where λinv , λc and λd is energy efficiency of inverter, battery
charge, and discharge, respectively. P b,s

h indicates the amount
of energy that saved in the battery, P b,c

h is the energy used for
charge and P b,d

h is the energy from discharge process at time
slot t.

The total battery energy Eb at time slot t within the
community is represented by,

Eb(t) = Σ∀h∈HP b,s
h (t). (3)

We define P g
h is the amount of energy generation of

household h at time slot t. Thus, the total amount of energy
generation for all the prosumers in the community is deter-
mined as follows:

Eg(t) = Σ∀h∈HP g
h(t). (4)

Energy is preferentially considered for use by individuals.
Therefore, energy sharing occurs only when individuals have
excess energy. Conversely, it is necessary to receive energy
from other households and/or from traditional energy provided
by the power supplier for this household. Additionally, we
consider each household in one community is very near each
other. Hence, the line loss is ignored in this paper like [12].

For household h, P l
h is defined as total load at time slot t,

P d
h represents energy demand, P s

h is the shared energy and
P b,c

h is the amount of energy used for charge into battery at
time slot t. Therefore, the load at time slot t for household h
is represented as follows:

P l
h(t) = P d

h(t) + P s
h(t) + P b,c

h (t). (5)

Besides, for household h, we define P g
h is the amount of

energy generation, P r
h is the received energy and P b,c

h is the
amount of energy discharged from the battery at time slot t.
Hence, the energy can be used at time slot t for household h
is represented as below:

Pu
h(t) = λinv ∗ P g

h(t) + P r
h(t) + P b,d

h (t). (6)

Therefore, the non-renewable energy usage of household h at
time slot t can be given as follows:

Pn
h(t) =

{
P l

h(t)− Pu
h(t), if P l

h(t) ≥ Pu
h(t)

0, otherwise. (7)

B. Problem Formulation of Prosumer Community Energy
Scheduling

The objective of this work is to minimize the usage of non-
renewable energy of the entire community through scheduling
the energy sharing and battery charge/discharge. The problem
formulation is as follows:

min
P s

h(t),P
b,d
h (t),P b,c

h (t)
Σ∀h∈HΣ∀t∈TP

n
h(t), (8)

s.t. 0 < λinv, λd, λc < 1, (8a)

Σ∀h∈H(1−B)(P b,s
h (t)−

P b,d
h (t)

λinv ∗ λd
) ≥ Σ∀h∈Hbmin, (8b)

Σ∀h∈HB(P b,s
h (t)+λinvλcP

b,c
h (t))�Σ∀h∈Hbmax, (8c)

Σ∀h∈HP s
h(t)≤λinv ∗ (Eg(t)+λd ∗ Eb(t)), (8d)

B ∈ {0, 1}, t ∈ T. (8e)

In problem (8), (8a) is the constraint that illustrates the
efficiency of inverter, battery charge and discharge are in the
range of [0,1]. Constraint (8b) enables the total remaining
energy not less than the total minimum battery state of the
entire community when battery discharge occurs. Constraint
(8c) ensures that after charging, the energy saved in the battery
of the entire community is not greater than the maximum
battery capacity. The variable B in constraint (8b) and (8c)
takes decision regarding whether it is charge or discharge
process. Notably, constraints (8d) determines that the amount
of energy that can be shared no greater than the aggregate of
energy from solar generation and battery with the efficiency of
the inverter. Finally, constraint (8e) defines the binary decision
variable.

III. SOLUTION WITH LSTM AND SWARM INTELLIGENCE

The system model and problem formulation for minimizing
non-renewable energy usage through energy sharing schedul-
ing in the P2P prosumer community are proposed in Section
II. To devise the solution of the formulated problem, we
decompose it into the day-ahead prediction and optimization
stage. Accordingly, we introduce long short term memory for
energy demand prediction and swarm intelligence for energy
sharing scheduling with considering battery storage of the next
day in this section, as shown in Fig. 2.

A. Energy Demand Forecasting via Long Short Term Memory

Long short term memory network (LSTM) is a kind of
optimized version of RNN which is able to handle time series
problem by sequence-based model [13] [14]. Through LSTM,
the difficulty of learning long-range dependencies with RNN
due to gradient vanishing or exploding problems are solved.
Therefore, we use LSTM to forecast the day-ahead energy
demand. The related process is showed in Fig. 2 prediction
stage.
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Fig. 2. Solution with LSTM and Swarm Intelligence

In this stage, we firstly preprocess the original data into
the matrix format. Secondly, we use min-max normalization
to scale the range of the preprocessed data into [0,1] by the
following formula.

Xt
h =

xt
h − xmin

xmax − xmin
. (9)

where xt
h is the original energy consumption data of house-

hold h at time slot t, Xt
h is the normalized value, xmin is

the minimum and xmax is the maximum amount of energy
demand in all time intervals.

Then we divide the data into a training dataset and test
dataset. Based on these datasets, we adopt the LSTM as the
solution for the day-ahead energy demand forecast. Lastly, we
rescale the predict data by using the formula as below,

Y t
h = xmin +

(Xt
h −Xmin)(xmax − xmin)

Xmax −Xmin
. (10)

Where Xmin is the minimum and Xmax is the maximum value
of the predicted data before rescaling. Y t

h is the real forecast
of day-ahead energy demand of household h at time slot t.

B. Optimization with Swarm Intelligence

In Fig. 2 optimization stage, particle swarm optimization
(PSO) is used. It is a population-based technique introduced by
Kennedy and Eberhart in 1995, which gets the best performing
particles (global best) and location (personal best) by allowing
particles to fly around the solution space [15].

Initially, particles are placed randomly in the solution space
and then get the optima by flying around. The movements
are affected by the histories and other particles [16]. In
each iteration, each particle will be updated by following the
personal best (pb) and the global best (gb). All particles will
eventually settle at and around the optima.

Algorithm 1 Swarm Intelligence (Global best)
Input : w, c1, c2, λinv, λd, λc, bmin, bmax,

particalNum,MAX ITERATIONS,
Demand,Generation

Output: X∗

1: Step 1: Initialization
2: Randomly assign initial state of battery
3: for each time slot t do
4: for each particle i do
5: generate random value P s

t that satisfies (8d)
6: generate random value P c

t that satisfies (8c)
7: generate random value P d

t that satisfies (8b)
8: initialize personal best: pbi
9: end for

10: get global best: gbest
11: end for
12: Step 2: Iteration
13: repeat
14: for each time slot t do
15: for each particle i do
16: using eq. (8): F (xi)
17: if F (xi) < F (pbi) then
18: pbi = xi

19: end if
20: if F (pbi) < F (gbest) then
21: gbest = pbi
22: end if
23: end for
24: for each particle i do
25: update its velocity (11) and its position (12)
26: end for
27: end for
28: it = it+ 1
29: until it > MAX ITERATIONS

The movement of particle is illustrated by its position P =
{1, 2, ..., P} and its speed V = {1, 2, ..., V }. And it can be
represented as following equations.

V t+1
i = wV t

i + c1r()(pb
t
i − pti) + c2r()(gb

t
i − pti). (11)

P t+1
i = pti + V t+1

i . (12)

Where w is the inertia factor, c1, c2 are weighting factors that
determine the best position of both personal and global, and
r()̇ is a uniform random value within [0,1].

As for the performance of PSO, it is determined by eval-
uating the fitness function F ()̇. In this research, we define
the objective (8) as the fitness function. The observation for
each time slot t is denoted by Xt = {P s

t , P
c
t , P

d
t }, which

means the total amount of energy sharing, battery charge,
and discharge of the entire community. The detail process is
showed in Algorithm 1.

In Algorithm 1, we input the predicted energy demand
data from the previous stage, solar generation data, maximum
number of iterations, number of particles, minimum and
maximum capacity of battery, efficiency of inverter/battery
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TABLE II
PARAMETERS OF LSTM

Parameter Value
Hidden layer 2

Neurons 32
Learning rate 0.001

Batch size 32
Look back 24

charge/discharge and coefficients of PSO, aims to get optimal
Xt at each time slot. Lines 1 to 11 show the initialization
step, in which we generate random value of Xt that satisfies
(8b), (8c), (8d) for each particle per time slot. Then we get
the initial personal best of each particle and global best of all
particles. Lines 12 to 29 show the iteration step. In this step,
the velocity and position will be updated in each iteration by
(11) and (12), respectively. Based on the new position, if better
fitness value appears, the personal best or global best will be
updated. Finally, the global best will be the solution after all
iterations.

IV. PERFORMANCE EVALUATION

The proposed LSTM and PSO joint approach is imple-
mented on the python platform. To achieve the objective of this
paper, two well-known datasets [17] [18] are used, where [17]
is the solar panel dataset used as renewable energy generation
and demand of 17 households that selected from [18] will be
used in hourly day-ahead demand prediction via LSTM. Based
on the generation data and predicted demand, we use PSO to
do optimization.

A. Evaluation of LSTM

For the energy demand forecast, we use LSTM and the
detailed parameters are shown in Table II. Here, two layers
LSTM with 32 neurons for each hidden layer, and the look
back state set to 24 hours is adopted. And also, the learning
rate is 0.001 and batch size is set to 32. Furthermore, one-year
data from [18] is divided into two parts, data from January to
August as the training dataset and September to December
as test dataset, in the preprocessing stage. First, we use eight
months training dataset to train the model. Second, based on
that model, we use test data to get the day-ahead demand
prediction. In the case of comparison, ARIMA is selected
because it is widely and also powerful in time series prediction.
From Table III, it can be seen that the mean square error
(MSE) of the LSTM model is 0.1599 and the root mean square
error (RMSE) is 0.40, while the related values of ARIMA
model are 0.652 and 0.81, respectively. Therefore, the LSTM
model gains higher accuracy than the ARIMA model since it
has lower MSE and RMSE.

Fig. 3 shows one week’s forecast data based on LSTM
and ARIMA, respectively. These data are selected from the
prediction results of the test dataset. In this figure, it can
be seen that LSTM based test dataset forecast gains higher
accuracy than ARIMA. Besides, it costs more than 20 hours

TABLE III
COMPARISON BETWEEN LSTM AND ARIMA

Demand Forecast Model MSE RMSE
ARIMA 0.652 0.81
LSTM 0.1599 0.40

Fig. 3. Test Dataset Energy Demand Prediction by LSTM and ARIMA

for predicting four months of data with the ARIMA model,
while the LSTM model only takes several minutes in the
same environment. Accordingly, LSTM has better superiority
compared with the ARIMA model.

B. Optimization based on PSO

TABLE IV
PARAMETERS FOR OPTIMIZATION

Parameter Value
λinv 0.96
λc 0.958
λd 0.958

bmin 0 KWh
bmax 13.5 KWh

Fig. 4. PSO Optimization

The related parameters of the energy scheduling used in this
paper are shown in Table IV, the same as [19]. In the previous
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Fig. 5. Related Parameters scheduled by PSO

stage, we have used LSTM to predict hourly based demand
and the output will be used as the input of PSO optimization
in this stage. The proposed approach can be adapted to every
future day, but we only randomly select a day for a case study.

Fig. 4 describes total energy load and solar generation of
a specified community before scheduling without considering
battery storage and energy sharing. And also, it shows load
and generation after scheduling the battery and sharing. In
this figure, it illustrates that from 0:00 to around 7:00 and
after 20:00, solar generation tends to be zero before schedul-
ing. However, during this period, the energy is still being
consumed. Besides, solar generation is much greater than
energy consumption at other times. Namely, energy usage and
generation are in an uneven state. As a consequence, it is
important and necessary to do energy scheduling to achieve
the goal of using the least amount of non-renewable energy.
Therefore, PSO optimization is used and after optimization, it
becomes able to reach the energy balance of the community
by scheduling the battery charge/discharge and sharing process
of each household. That is, the solar generation can fulfill
the usage of energy in every hour with optimization of the
proposed method. Specifically, through the PSO optimization,
the total usage of non-renewable energy of the community has
been reduced by approximately 814.375 KWh.

Fig. 5 shows the total amount of energy that can be used
for energy sharing, battery charge, and discharge at each time
slot of the entire community. It can be seen that energy can be
used for sharing at around 9:00 to 18:00 is larger than other
times. This is because solar energy is mainly generated during
this time.

V. CONCLUSION AND FUTURE WORK

In this research, we formulated the minimization problem
of non-renewable energy usage. To handle this problem, we
proposed a joint approach based on LSTM and swarm in-
telligence with the consideration of battery and P2P sharing
process within a community such that to improve the unbal-
ance between load and solar generation. In the performance
evaluation section, the prediction method based on the LSTM
outperform ARIMA model by reaching the higher accuracy
and better performance in time-consuming problem of model

training. In the optimization stage, the total generation can
satisfy the total requirements of the specified community with
PSO. In the future, we will consider the energy scheduling of
multiple communities and the benefit of each household.
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