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Abstract— There is an increasing interest in a fast-growing
machine learning technique called Federated Learning (FL),
in which the model training is distributed over mobile user
equipment (UEs), exploiting UEs’ local computation and training
data. Despite its advantages such as preserving data privacy,
FL still has challenges of heterogeneity across UEs’ data and
physical resources. To address these challenges, we first propose
FEDL, a FL algorithm which can handle heterogeneous UE data
without further assumptions except strongly convex and smooth
loss functions. We provide a convergence rate characterizing the
trade-off between local computation rounds of each UE to update
its local model and global communication rounds to update the
FL global model. We then employ FEDL in wireless networks
as a resource allocation optimization problem that captures the
trade-off between FEDL convergence wall clock time and energy
consumption of UEs with heterogeneous computing and power
resources. Even though the wireless resource allocation problem
of FEDL is non-convex, we exploit this problem’s structure
to decompose it into three sub-problems and analyze their
closed-form solutions as well as insights into problem design.
Finally, we empirically evaluate the convergence of FEDL with
PyTorch experiments, and provide extensive numerical results
for the wireless resource allocation sub-problems. Experimental
results show that FEDL outperforms the vanilla FedAvg algo-
rithm in terms of convergence rate and test accuracy in various
settings.
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I. INTRODUCTION

THE significant increase in the number of cutting-edge
mobile and Internet of Things (IoT) devices results in

the phenomenal growth of the data volume generated at the
edge network. It has been predicted that in 2025 there will
be 80 billion devices connected to the Internet and the global
data will achieve 180 trillion gigabytes [2]. However, most
of this data is privacy-sensitive in nature. It is not only risky
to store this data in data centers but also costly in terms of
communication. For example, location-based services such as
the app Waze [3], can help users avoid heavy-traffic roads and
thus reduce congestion. However, to use this application, users
have to share their own locations with the server and it cannot
guarantee that the location of drivers is kept safely. Besides,
in order to suggest the optimal route for drivers, Waze collects
a large number of data including every road driven to transfer
to the data center. Transferring this amount of data requires
a high expense in communication and drivers’ devices to be
connected to the Internet continuously.

In order to maintain the privacy of consumer data and
reduce the communication cost, it is necessary to have an
emergence of a new class of machine learning techniques
that shifts computation to the edge network where the privacy
of data is maintained. One such popular technique is called
Federated Learning (FL) [4]. This technology allows users to
collaboratively build a shared learning model while preserving
all training data on their user equipment (UE). In particular,
a UE computes the updates to the current global model on
its local training data, which is then aggregated and fed-back
by a central server, so that all UEs have access to the same
global model to compute their new updates. This process
is repeated until an accuracy level of the learning model is
reached. In this way, the user data privacy is well protected
because local training data are not shared, which thus differs
FL from conventional approaches in data acquisition, storage,
and training.

There are several reasons why FL is attracting plenty of
interests. Firstly, modern smart UEs are now able to handle
heavy computing tasks of intelligent applications as they
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are armed with high-performance central processing units
(CPUs), graphics processing units (GPUs) and integrated AI
chips called neural processing units (e.g., Snapdragon 845,
Kirin 980 CPU and Apple A12 Bionic CPU [5]). Being
equipped with the latest computing resources at the edge,
the model training can be updated locally leading to the
reduction in the time to upload raw data to the data center.
Secondly, the increase in storage capacity, as well as the
plethora of sensors (e.g., cameras, microphones, GPS) in UEs
enables them to collect a wealth amount of data and store it
locally. This facilitates unprecedented large-scale flexible data
collection and model training. With recent advances in edge
computing, FL can be more easily implemented in reality. For
example, a crowd of smart devices can proactively sense and
collect data during the day hours, then jointly feedback and
update the global model during the night hours, to improve
the efficiency and accuracy for next-day usage. We envision
that such this approach will boost a new generation of smart
services, such as smart transportation, smart shopping, and
smart hospital.

Despite its promising benefits, FL comes with new
challenges to tackle. On one hand, the number of UEs in
FL can be large and the data generated by UEs have diverse
distributions [4]. Designing efficient algorithms to handle
statistical heterogeneity with convergence guarantee is thus
a priority question. Recently, several studies [4], [6], [7]
have used de facto optimization algorithms such as Gradient
Descent (GD), Stochastic Gradient Descent (SGD) to enable
devices’ local updates in FL. One of the most well-known
methods named FedAvg [4] which uses average SGD updates
was experimentally shown to perform well in heterogeneous
UE data settings. However, this work lacks theoretical
convergence analysis. By leveraging edge computing to
enable FL, [7] proposed algorithms for heterogeneous FL
networks by using GD with bounded gradient divergence
assumption to facilitate the convergence analysis. In another
direction, the idea of allowing UEs to solve local problems
in FL with arbitrary optimization algorithm to obtain a local
accuracy (or inexactness level) has attracted a number of
researchers [8], [9]. While [8] uses primal-dual analysis to
prove the algorithm convergence under any distribution of
data, the authors of [9] propose adding proximal terms to local
functions and use primal analysis for convergence proof with a
local dissimilarity assumption, a similar idea of bounding the
gradient divergence between local and global loss functions.

While all of the above FL algorithms’ complexities are
measured in terms of the number of local and global update
rounds (or iterations), the wall clock time of FL when deployed
in a wireless environment mainly depends on the number of
UEs and their diverse characteristics, since UEs may have
different hardware, energy budget, and wireless connection
status. Specifically, the total wall-clock training time of FL
includes not only the UE computation time (which depend
on UEs’ CPU types and local data sizes) but also the com-
munication time of all UEs (which depends on UEs’ channel
gains, transmission power, and local data sizes). Thus, to min-
imize the wall-clock training time of FL, a careful resource
allocation problem for FL over wireless networks needs to

consider not only the FL parameters such as accuracy level
for computation-communication trade-off, but also allocating
the UEs’ resources such as power and CPU cycles with
respect to wireless conditions. From the motivations above,
our contributions are summarized as follows:

� We propose a new FL algorithm with only assumption of
strongly convex and smooth loss functions, named FEDL.
The crux of FEDL is a new local surrogate function,
which is designed for each UE to solve its local problem
approximately up to a local accuracy level �, and is
characterized by a hyper-learning rate �. Using primal
convergence analysis, we show the linear convergence
rate of FEDL by controlling � and �, which also provides
the trade-off between the number of local computa-
tion and global communication rounds. We then employ
FEDL, using both strongly convex and non-convex
loss functions, on PyTorch to verify its performance
with several federated datasets. The experimental results
show that FEDL outperforms the vanilla FedAvg [4]
in terms of training loss, convergence rate and test
accuracy.

� We propose a resource allocation problem for FEDL over
wireless networks to capture the trade-off between the
wall clock training time of FEDL and UE energy con-
sumption by using the Pareto efficiency model. To handle
the non-convexity of this problem, we exploit its special
structure to decompose it into three sub-problems. The
first two sub-problems relate to UE resource allocation
over wireless networks, which are transformed to be
convex and solved separately; then their solutions are
used to obtain the solution to the third sub-problem,
which gives the optimal � and � of FEDL. We derive
their closed-form solutions, and characterize the impact
of the Pareto-efficient controlling knob to the optimal:
(i) computation and communication training time, (ii) UE
resource allocation, and (iii) hyper-learning rate and local
accuracy. We also provide extensive numerical results to
examine the impact of UE heterogeneity and Pareto curve
of UE energy cost and wall clock training time.

The rest of this paper is organized as follows. Section II
discusses related works. Section III contains system model.
Sections IV and V provide the proposed FL algorithm’s analy-
sis and resource allocation over wireless networks, respec-
tively. Experimental performance of FEDL and numerical
results of the resource allocation problem are provided in
Section VI and Section VII, respectively. Section VIII con-
cludes our work. All theoretical proofs can be found in the
supplementary material.

II. RELATED WORKS

Due to Big Data applications and complex models such as
Deep Learning, training machine learning models needs to be
distributed over multiple machines, giving rise to researches
on decentralized machine learning [10]–[14]. However, most
of the algorithms in these works are designed for machines
having balanced and/or independent and identically distributed
(i.i.d.) data. Realizing the lack of studies in dealing with
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unbalanced and heterogeneous data distribution, an increasing
number of researchers place interest in studying FL, a state-
of-the-art distributed machine learning technique [4], [7], [9],
[15]–[18]. This technique takes advantage of the involve-
ment of a large number of devices where data are gener-
ated locally, which makes them statistically heterogeneous in
nature. As a result, designing algorithms with global model’s
convergence guarantee becomes challenging. There are two
main approaches to overcome this problem.

The first approach is based on de facto algorithm SGD
with a fixed number of local iterations on each device [4].
Despite its feasibility, these studies still have limitations as
lacking the convergence analysis. The work in [7], on the
other hand, used GD and additional assumptions on Lipschitz
local functions and bounded gradient divergence to prove the
algorithm convergence.

Another useful approach to tackling the heterogeneity chal-
lenge is to allow UEs to solve their primal problems approx-
imately up to a local accuracy threshold [9], [16], [17].
Their works show that the main benefit of this approximation
approach is that it allows flexibility in the compromise between
the number of rounds run on the local model update and the
communication to the server for the global model update.
[17] exploits proximal stochastic variance reduced gradient
methods for both convex and non-convex FL. While the
authors of [9] use primal convergence analysis with bounded
gradient divergence assumption and show that their algorithm
can apply to non-convex FL setting, [16] uses primal-dual
convergence analysis, which is only applicable to FL with
convex problems.

From a different perspective, many researchers have recently
focused on the efficient communications between UEs and
edge servers in FL-supported networks [1], [7], [19]–[24].
The work [7] proposes algorithms for FL in the context
of edge networks with resource constraints. While there are
several works [25], [26] that study minimizing communicated
messages for each global iteration update by applying spar-
sification and quantization, it is still a challenge to utilize
them in FL networks. For example, [19] uses the gradient
quantization, gradient sparsification, and error accumulation to
compress gradient message under the wireless multiple-access
channel with the assumption of noiseless communication.
The work [20] studies a similar quantization technique to
explore convergence guarantee with low-precision training.
[24] considers joint learning with a subset of users and
wireless factors such as packet errors and the availability
of wireless resources while [21] focuses on using cell-free
massive MIMO to support FL. [22], [23] apply a Stackelberg
game to motivate the participation of the clients during the
aggregation. Contrary to most of these works which make use
of existing, standard FL algorithms, our work proposes a new
one. Nevertheless, these works lack studies on unbalanced and
heterogeneous data among UEs. We study how the computa-
tion and communication characteristics of UEs can affect their
energy consumption, training time, convergence and accuracy
level of FL, considering heterogeneous UEs in terms of data
size, channel gain and computational and transmission power
capabilities.

III. SYSTEM MODEL

We consider a wireless multi-user system which consists of
one edge server and a set N of N UEs. Each participating
UE n stores a local dataset Dn, with its size denoted by Dn.
Then, we can define the total data size by D =

�N
n=1 Dn.

In an example of the supervised learning setting, at UE n,
Dn defines the collection of data samples given as a set of
input-output pairs {xi, yi}Dn

i=1, where xi � Rd is an input
sample vector with d features, and yi � R is the labeled output
value for the sample xi. The data can be generated through
the usage of UE, for example, via interactions with mobile
apps.

In a typical learning problem, for a sample data {xi, yi}
with input xi (e.g., the response time of various apps inside
the UE), the task is to find the model parameter w � Rd that
characterizes the output yi (e.g., label of edge server load, such
as high or low, in next hours) with the loss function fi(w).
The loss function on the data set of UE n is defined as

Fn(w) :=
1

Dn

�
i�Dn

fi(w).

Then, the learning model is the minimizer of the following
global loss function minimization problem

min
w�Rd

F (w) :=
�N

n=1
pnFn(w), (1)

where pn := Dn
D , �n.

Assumption 1: Fn(•) is L-smooth and �-strongly convex,
�n, respectively, as follows, �w, w� � Rd:

Fn(w) � Fn(w�)+
�
�Fn(w�), w � w��+

L
2

�w � w��2

Fn(w) � Fn(w�)+
�
�Fn(w�), w � w��+

�
2

�w � w��2 .

Throughout this paper, �w, w�	 denotes the inner product of
vectors w and w� and �•� is Euclidean norm. We note that
strong convexity and smoothness in Assumption 1, also used
in [7], can be found in a wide range of applications such as l2-
regularized linear regression model with fi(w) = 1

2 (�xi, w	�
yi)2 + �

2 �w�2 , yi � R, and l2-regularized logistic regression
with fi(w) = log

�
1 + exp(�yi�xi, w	)

�
+ �

2 �w�2 , yi �
{�1, 1}. We also denote � := L

� the condition number of
Fn(•)’s Hessian matrix.

IV. FEDERATED LEARNING ALGORITHM DESIGN

In this section, we propose a FL algorithm, named FEDL,
as presented in Algorithm 1. To solve problem (1), FEDL uses
an iterative approach that requires Kg global rounds for global
model updates. In each global round, there are interactions
between the UEs and edge server as follows.

UEs update local models: In order to obtain the local
model wt

n at a global round t, each UE n first receives the
feedback information wt�1 and � flF t�1 (which will be defined
later in (4) and (5), respectively) from the server, and then
minimize its following surrogate function (line 3)

min
w�Rd

J t
n(w) := Fn(w) +

�
�� flF t�1 � �Fn(wt�1), w

�
. (2)
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Algorithm 1 FEDL
1: Input: w0, � � [0, 1], � > 0.
2: for t = 1 toKg do
3: Computation: Each UE n receives wt�1 and � flF t�1

from the server, and solves (2) in Kl rounds to achieve
�-approximation solution wt

n satisfying (3).
4: Communication: UE n transmit wt

n and �Fn(wt
n), �n,

to the edge server.
5: Aggregation and Feedbacks: The edge server updates

the global model wt and � flF t as in (4) and (5),
respectively, and then fed-backs them to all UEs.

One of the key ideas of FEDL is UEs can solve (2) approxi-
mately to obtain an approximation solution wt

n satisfying
���J t

n(wt
n)

�� � �
���J t

n(wt�1)
�� , �n, (3)

which is parametrized by a local accuracy � � (0, 1) that is
common to all UEs. This local accuracy concept resembles
the approximate factors in [8], [27]. Here � = 0 means the
local problem (2) is required to be solved optimally, and
� = 1 means no progress for local problem, e.g., by setting
wt

n = wt�1. The surrogate function J t
n(.) (2) is motivated

from the scheme Distributed Approximate NEwton (DANE)
proposed in [11]. However, DANE requires (i) the global
gradient �F (wt�1) (which is not available at UEs or
server in FL context), (ii) additional proximal terms (i.e.,
µ
2

��w � wt�1
��2

), and (iii) solving local problem (2) exactly
(i.e., � = 0). On the other hand, FEDL uses (i) the global
gradient estimate � flF t�1, which can be measured by the
server from UE’s information, instead of exact but unrealistic
�F (wt�1), (ii) avoids using proximal terms to limit additional
controlling parameter (i.e., µ), and (iii) flexibly solves local
problem approximately by controlling �. Furthermore,
we have �J t

n(w) = �Fn(w) + �� flF t�1 � �Fn(wt�1),
which includes both local and global gradient estimate
weighted by a controllable parameter �. We will see later
how � affects to the convergence of FEDL. Compared to
the vanilla FedAvg, FEDL requires more information (UEs
sending not only wt

n but also �Fn(wt
n)) to obtain the benefits

of a) theoretical linear convergence and b) experimental faster
convergence, which will be shown in later sections. And
we will also show that with Assumption 1, the theoretical
analysis of FEDL does not require the gradient divergence
bound assumption, which is typically required in non-strongly
convex cases as in [7, Definition 1], [9, Assumption 1].

Edge server updates global model: After receiving the
local model wt

n and gradient �Fn(wt
n), �n, the edge server

aggregates them as follows

wt :=
�N

n=1
pnwt

n, (4)

� flF t :=
�N

n=1
pn�Fn(wt

n) (5)

and then broadcast wt and � flF t to all UEs (line 5), which
are required for participating UEs to minimize their surrogate
J t+1

n in the next global round t+1. We see that the edge server
does not access the local data Dn, �n, thus preserving data

privacy. For an arbitrary small constant � > 0, the problem (1)
achieves a global model convergence wt when its satisfies

F (wt) � F (w�) � �, �t � Kg, (6)

where w� is the optimal solution to (1).
Next, we will provide the convergence analysis for FEDL.

We see that J t
n(w) is also �-strongly convex and L-smooth as

Fn(•) because they have the same Hessian matrix. With these
properties of J t

n(w), we can use GD to solve (2) as follows

zk+1 = zk � hk�J t
n(zk), (7)

where zk is the local model update and hk is a predefined
learning rate at iteration k, which has been shown to generate
a convergent sequence (zk)k�0 satisfying a linear convergence
rate [28] as follows

J t
n(zk) � J t

n(z�) � c(1 � �)k�
J t

n(z0) � J t
n(z�)

�
, (8)

where z� is the optimal solution to the local problem (2), and
c and � � (0, 1) are constants depending on �.

Lemma 1: With Assumption 1 and the assumed linear con-
vergence rate (8) with z0 = wt�1, the number of local rounds
Kl for solving (2) to achieve a �-approximation condition (3)
is

Kl =
2
�

log
C
�

, (9)

where C := c�.
Theorem 1: With Assumption 1, the convergence of FEDL

is achieved with linear rate

F (wt) � F (w�) � (1 � �)t(F (w(0)) � F (w�)), (10)

when � � (0, 1), and

� :=
�(2(� � 1)2 � (� + 1)�(3� + 2)�2 � (� + 1)��2)

2�
�
(1 + �)2�2�2 + 1

� .

(11)

Corollary 1: The number of global rounds for FEDL to
achieve the convergence satisfying (6) is

Kg =
1
�

log
F (w0) � F (w�)

�
. (12)

The proof of this corollary can be shown similarly to that
of Lemma 1. We have some following remarks:

1) The convergence of FEDL can always be obtained by set-
ting sufficiently small values of both � and � � (0, 1) such
that � � (0, 1). While the denominator of (11) is greater
than 2, its numerator can be rewritten as 2�(A�B), where
A = 2(� �1)2 � (�+1)�(3�+2)�2 and B = (�+1)��2.
Since lim��0 A = 2 and lim�,��0 B = 0, there exists
small values of � and � such that A-B > 0, thus � > 0.
On the other hand, we have lim��0 � = 0; thus, there
exists a small value of � such that � < 1. We note
that � � (0, 1) is only the sufficient condition, but not
the necessary condition, for the convergence of FEDL.
Thus, there exist possible hyper-parameter settings such
that FEDL converges but � /� (0, 1).

2) There is a convergence trade-off between the number of
local and global rounds characterized by �: small � makes
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large Kl, yet small Kg , according to (9) and (12), respec-
tively. This trade-off was also observed by authors of [8],
though their technique (i.e., primal-dual optimization) is
different from ours.

3) While � affects to both local and global convergence,
� only affects to the global convergence rate of FEDL.
If � is small, then � is also small, thus inducing large Kg.
However, if � is large enough, � may not be in (0, 1),
which leads to the divergence of FEDL. We call � the
hyper-learning rate for the global problem (1).

4) The condition number � also affects to the FEDL conver-
gence: if � is large (i.e., poorly conditioned problem (2)),
both � and � should be sufficiently small in order for
� � (0, 1) (i.e., slow convergence rate.) This observation
is well-aligned to traditional optimization convergence
analysis [29, Chapter 9].

5) In this work, the theory of FEDL is applicable to (i) full
data passing using GD, (ii) the participation of all UEs,
and (iii) strongly convex and smooth loss functions.
However, using mini-batch is a common practice in
machine learning to reduce the computation load at the
UEs. On the other hand, choosing a subset of participating
UEs in each global iteration is a practical approach to
reduce the straggler effect, in which the run-time of each
iteration is limited by the “slowest” UEs (the straggler)
because heterogeneous UEs compute and communicate at
different speeds. Finally, non-convex loss functions cap-
ture several essential machine learning tasks using neural
networks. In Section VII, we will experimentally show
that FEDL works well with (i) mini-batch, (ii) subset of
UEs samplings, and (iii) non-convex loss functions.

The time complexity of FEDL is represented by Kg
communication rounds and computation complexity is KgKl
computation rounds. When implementing FEDL over wireless
networks, the wall clock time of each communication round
can be significantly larger than that of computation if the
number of UEs increases, due to multi-user contention for
wireless medium. In the next section, we will study the UE
resource allocation to enable FEDL over wireless networks.

V. FEDL OVER WIRELESS NETWORKS

In this section, we first present the system model and
problem formulation of FEDL over a time-sharing wireless
environment. We then decompose this problem into three
sub-problems, derive their closed-form solutions, reveal the
hindsights, and provide numerical support.

A. System Model

At first, we consider synchronous communication which
requires all UEs to finish solving their local problems
before entering the communication phase. During the
communication phase, the model’s updates are transferred to
the edge server by using a wireless medium sharing scheme.
In the communication phase, each global round consists of
computation and communication time which includes uplink
and downlink ones. In this work, however, we do not consider
the downlink communication time as it is negligible compared

to the uplink one. The reason is that the downlink has larger
bandwidth than the uplink and the edge server power is much
higher than UE’s transmission power. Besides, the computation
time only depends on the number of local rounds, and thus �,
according to (9). Denoting the time of one local round by
Tcp, i.e., the time to computing one local round (8), then the
computation time in one global round is Kl Tcp. Denoting
the communication time in one global round by Tco, the wall
clock time of one global round of FEDL is defined as

Tg := Tco + Kl Tcp.

1) Computation Model: We denote the number of CPU
cycles for UE n to execute one sample of data by cn, which
can be measured offline [30] and is known a priori. Since all
samples {xi, yi}i�Dn have the same size (i.e., number of bits),
the number of CPU cycles required for UE n to run one local
round is cnDn. Denote the CPU-cycle frequency of the UE n
by fn. Then the CPU energy consumption of UE n for one
local round of computation can be expressed as follows [31]

En,cp =
�cnDn

i=1

�n

2
f2

n =
�n

2
cnDnf2

n, (13)

where �n/2 is the effective capacitance coefficient of UE
n’s computing chipset. Furthermore, the computation time per
local round of the UE n is cnDn

fn
, �n. We denote the vector

of fn by f � Rn.
2) Communication Model: In FEDL, regarding to the

communication phase of UEs, we consider a time-sharing
multi-access protocol (similar to TDMA) for UEs. We note
that this time-sharing model is not restrictive because other
schemes, such as OFDMA, can also be applied to FEDL. The
achievable transmission rate (nats/s) of UE n is defined as
follows:

rn = B ln
�
1 +

flhnpn

N0

�
, (14)

where B is the bandwidth, N0 is the background noise, pn is
the transmission power, and flhn is the average channel gain
of the UE n during the training time of FEDL. Denote the
fraction of communication time allocated to UE n by 	n, and
the data size (in nats) of wn and �Fn(wn) by sn. Because the
dimension of vectors wn and �Fn(wn) is fixed, we assume
that their sizes are constant throughout the FEDL learning.
Then the transmission rate of each UE n is

rn = sn/	n, (15)

which is shown to be the most energy-efficient transmission
policy [32]. Thus, to transmit sn within a time duration 	n,
the UE n’s energy consumption is

En,co = 	n pn(sn/	n), (16)

where the power function is

pn(sn/	n) :=
N0
flhn

	
e

sn/�n
B � 1



(17)

according to (14) and (15). We denote the vector of 	n by
	 � Rn.
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Define the total energy consumption of all UEs for each
global round by Eg , which is expressed as follows:

Eg :=
�N

n=1
En,co + Kl En,cp.

B. Problem Formulation

We consider an optimization problem, abusing the same
name FEDL, as follows

minimize
f,�,�,�,Tco,Tcp

Kg
�
Eg + 
 Tg

�

subject to
�N

n=1
	n � Tco, (18)

max
n

cnDn

fn
= Tcp, (19)

fmin
n � fn � fmax

n , �n � N , (20)

pmin
n � pn(sn/	n) � pmax

n , �n � N , (21)

0 � � � 1. (22)

Minimize both UEs’ energy consumption and the FL time
are conflicting. For example, the UEs can save the energy by
setting the lowest frequency level all the time, but this will
certainly increase the training time. Therefore, to strike the
balance between energy cost and training time, the weight

 (Joules/second), used in the objective as an amount of
additional energy cost that FEDL is willing to bear for one
unit of training time to be reduced, captures the Pareto-optimal
tradeoff between the UEs’ energy cost and the FL time. For
example, when most of the UEs are plugged in, then UE
energy is not the main concern, thus 
 can be large. According
to optimization theory, 1/
 also plays the role of a Lagrange
multiplier for a “hard constraint” on UE energy [29].

While constraint (18) captures the time-sharing uplink trans-
mission of UEs, constraint (19) defines that the computing
time in one local round is determined by the “bottleneck”
UE (e.g., with large data size and low CPU frequency). The
feasible regions of CPU-frequency and transmit power of
UEs are imposed by constraints (20) and (21), respectively.
We note that (20) and (21) also capture the heterogeneity
of UEs with different types of CPU and transmit chipsets.
The last constraint restricts the feasible range of the local
accuracy.

C. Solutions to FEDL
We see that FEDL is non-convex due to the constraint (19)

and several products of two functions in the objective function.
However, in this section we will characterize FEDL’s solution
by decomposing it into multiple simpler sub-problems.

We consider the first case when � and � are fixed,
then FEDL can be decomposed into two sub-problems as
follows:

SUB1: minimize
f,Tcp

�N

n=1
En,cp + 
Tcp

subject to
cnDn

fn
� Tcp, �n � N ,

fmin
n � fn � fmax

n , �n � N . (23)

SUB2 : min.
�,Tco

�N

n=1
En,co + 
Tco

s.t.
�N

n=1
	n � Tco, (24)

pmin
n � pn(sn/	n) � pmax

n , �n. (25)

While SUB1 is a CPU-cycle control problem for the
computation time and energy minimization, SUB2 can be
considered as an uplink power control to determine the UEs’
fraction of time sharing to minimize the UEs energy and
communication time. We note that the constraint (19) of FEDL
is replaced by an equivalent one (23) in SUB1. We can
consider Tcp and Tco as virtual deadlines for UEs to perform
their computation and communication updates, respectively.
It can be observed that both SUB1 and SUB2 are convex
problems.

1) SUB1 Solution: We first propose Algorithm 2 in order
to categorize UEs into one of three groups: N1 is a group of
“bottleneck” UEs that always run its maximum frequency; N2
is the group of “strong” UEs which can finish their tasks before
the computational virtual deadline even with the minimum
frequency; and N3 is the group of UEs having the optimal
frequency inside the interior of their feasible sets.

Algorithm 2 Finding N1, N2, N3 in Lemma 2

1: Sort UEs such that c1 D1
fmin

1
� c2D2

fmin
2

. . . � cN DN
fmin

N
2: Input: N1 = 
, N2 = 
, N3 = N , TN3 in (28)
3: for i = 1 toN do
4: if maxn�N

cnDn
fmax

n
� TN3 > 0 and N1 == 
 then

5: N1 = N1 �
�
m : cmDm

fmax
m

= maxn�N
cnDn
fmax

n

�

6: N3 = N3 \ N1 and update TN3 in (28)

7: if ciDi
fmin

i
� TN3 then

8: N2 = N2 � {i}
9: N3 = N3 \ {i} and update TN3 in (28)

Lemma 2: The optimal solution to SUB1 is as follows

f�
n =


����

����

fmax
n , �n � N1,

fmin
n , �n � N2,

cnDn

T �
cp

, �n � N3,
(26)

T �
cp = max

�
TN1 , TN2 , TN3

�
, (27)

where N1, N2, N3 � N are three subsets of UEs produced by
Algorithm 2 and

TN1 = max
n�N

cnDn

fmax
n

,

TN2 = max
n�N2

cnDn

fmin
n

,

TN3 =
��

n�N3
�n(cnDn)3




�1/3

. (28)

From Lemma 2, first, we see that the optimal solution
depends not only on the existence of these subsets, but also
on their virtual deadlines TN1 , TN2 , and TN3 , in which the
longest of them will determine the optimal virtual deadline
T �

cp. Second, from (26), the optimal frequency of each UE will
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Fig. 1. Solution to SUB1 with five UEs. For wireless communication model, the UE channel gains follow the exponential distribution with the mean
g0(d0/d)4 where g0 = �40 dB and the reference distance d0 = 1 m. The distance between these devices and the wireless access point is uniformly
distributed between 2 and 50 m. In addition, B = 1 MHz, � = 10−10 W, the transmission power of devices are limited from 0.2 to 1 W. For UE
computation model, we set the training size Dn of each UE as uniform distribution in 5 � 10 MB, cn is uniformly distributed in 10 � 30 cycles/bit, fmax

n
is uniformly distributed in 1.0 � 2.0 GHz, fmin

n = 0.3 GHz. Furthermore, � = 2 × 10−28 and the UE update size sn = 25, 000 nats (�4.5 KB).

depend on both T �
cp and the subset it belongs to. We note that

depending on 
, some of the three sets (not all) are possibly
empty sets, and by default TNi = 0 if Ni is an empty set,
i = 1, 2, 3. Next, by varying 
, we observe the following
special cases.

Corollary 2: The optimal solution to SUB1 can be divided
into four regions as follows.

a) 
 � minn�N �n(fmin
n )3 :

N1 and N3 are empty sets. Thus, N2 = N , T �
co = TN2 =

maxn�N
cnDn
fmin

n
, and f�

n = fmin
n , �n � N .

b) minn�N �n(fmin
n )3 < 
 �

�
maxn�N2

cnDn
fmin

n

�3 :
N2 and N3 are non-empty sets, whereas N1 is
empty. Thus, T �

cp = max
�
TN2 , TN3

�
, and f�

n =
max

� cnDn
T �

cp
, fmin

n
�
, �n � N .

c)
�
maxn�N2

cnDn
fmin

n

�3 < 
 �
�

n�N3
�n

�
cnDn

�3

�
maxn�N

cnDn
fmax

n

�3 :

N1 and N2 are empty sets. Thus N3 = N , T �
cp = TN3 ,

and f�
n = cnDn

TN3
, �n � N .

d) 
 >
�

n�N3
�n

�
cnDn

�3

�
maxn�N

cnDn
fmax

n

�3 :

N1 is non-empty. Thus T �
cp = TN1 , and

f�
n =


�

�

fmax
n , �n � N1,

max
�cnDn

TN1

, fmin
n

�
, �n � N \ N1.

(29)

We illustrate Corollary 2 in Fig. 1 with four regions1 as
follows.

a) Very low 
 (i.e., 
 � 0.004): Designed for solely energy
minimization. In this region, all UE runs their CPU at the
lowest cycle frequency fmin

n , thus T �
cp is determined by the

last UEs that finish their computation with their minimum
frequency.

b) Low 
 (i.e., 0.004 � 
 � 0.1): Designed for prioritized
energy minimization. This region contains UEs of both N2
and N3. T �

cp is governed by which subset has higher virtual
computation deadline, which also determines the optimal
CPU-cycle frequency of N3. Other UEs with light-loaded

1All closed-form solutions are also verified by the solver IPOPT [33].

data, if exist, can run at the most energy-saving mode fmin
n

yet still finish their task before T �
cp (i.e., N2).

c) Medium 
 (i.e., 0.1 � 
 � 1): Designed for balancing
computation time and energy minimization. All UEs belong
to N3 with their optimal CPU-cycle frequency strictly
inside the feasible set.

d) High 
 (i.e., 
 � 1): Designed for prioritized compu-
tation time minimization. High value 
 can ensure the
existence of N1, consisting the most “bottleneck” UEs
(i.e., heavy-loaded data and/or low fmax

n ) that runs their
maximum CPU-cycle in (29) (top) and thus determines the
optimal computation time T �

cp. The other “non-bottleneck”
UEs either (i) adjust a “right” CPU-cycle to save the energy
yet still maintain their computing time the same as T �

cp
(i.e., N3), or (ii) can finish the computation with minimum
frequency before the “bottleneck” UEs (i.e., N2) as in (29)
(bottom).

2) SUB2 Solution: Before characterizing the solution to
SUB2, from (17) and (25), we first define two bounded values
for 	n as follows

	max
n =

sn

B ln(flhnN�1
0 pmin

n + 1)
,

	min
n =

sn

B ln(flhnN�1
0 pmax

n + 1)
,

which are the maximum and minimum possible fractions of
Tco that UE n can achieve by transmitting with its minimum
and maximum power, respectively. We also define a new
function gn : R  R as

gn(
) =
sn/B

1 + W
��N�1

0 h̄n�1
e

� ,

where W (•) is the Lambert W -function. We can consider
gn(•) as an indirect “power control” function that helps UE n
control the amount of time it should transmit an amount
of data sn by adjusting the power based on the weight 
.
This function is strictly decreasing (thus its inverse function
g�1

n (•) exists) reflecting that when we put more priotity on
minimizing the communication time (i.e., high 
), UE n
should raise the power to finish its transmission with less time
(i.e., low 	n).
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Fig. 2. The solution to SUB2 with five UEs. The numerical setting is the
same as that of Fig. 1.

Lemma 3: The solution to SUB2 is as follows

a) If 
 � g�1
n (	max

n ), then

	�
n = 	max

n

b) If g�1
n (	max

n ) < 
 < g�1
n (	min

n ), then

	min
n < 	�

n = gn(
) < 	max
n

c) If 
 � g�1
n (	min

n ), then

	�
n = 	min

n ,

and T �
co =

�N
n=1 	�

n .
This lemma can be explained through the lens of network

economics. If we interpret the FEDL system as the buyer and
UEs as sellers with the UE powers as commodities, then the
inverse function g�1

n (•) is interpreted as the price of energy
that UE n is willing to accept to provide power service for
FEDL to reduce the training time. There are two properties of
this function: (i) the price increases with respect to UE power,
and (ii) the price sensitivity depends on UEs characteristics,
e.g., UEs with better channel quality can have lower price,
whereas UEs with larger data size sn will have higher price.
Thus, each UE n will compare its energy price g�1

n (•) with
the “offer” price 
 by the system to decide how much power it
is willing to “sell”. Then, there are three cases corresponding
to the solutions to SUB2.

a) Low offer: If the offer price 
 is lower than the minimum
price request g�1

n (	max
n ), UE n will sell its lowest service

by transmitting with the minimum power pmin
n .

b) Medium offer: If the offer price 
 is within the range of an
acceptable price range, UE n will find a power level such
that the corresponding energy price will match the offer
price.

c) High offer: If the offer price 
 is higher than the maximum
price request g�1

n (	min
n ), UE n will sell its highest service

by transmitting with the maximum power pmax
n .

Lemma 3 is further illustrated in Fig. 2, showing how the
solution to SUB2 varies with respect to 
. It is observed from
this figure that due to the UE heterogeneity of channel gain,

 = 0.1 is a medium offer to UEs 2, 3, and 4, but a high offer
to UE 1, and low offer to UE 5.

While SUB1 and SUB2 solutions share the same
threshold-based dependence, we observe their differences as
follows. In SUB1 solution, the optimal CPU-cycle frequency
of UE n depends on the optimal T �

cp, which in turn depends

TABLE I

THE SOLUTION TO SUB3 WITH FIVE UES. THE NUMERICAL
SETTING IS THE SAME AS THAT OF FIG. 1

on the loads (i.e., cnDn
fn

, �n) of all UEs. Thus all UE load
information is required for the computation phase. On the
other hand, in SUB2 solution, each UE n can independently
choose its optimal power by comparing its price function
g�1

n (•) with 
 so that collecting UE information is not needed.
The reason is that the synchronization of computation time in
constraint (23) of SUB1 requires all UE loads, whereas the
UEs’ time-sharing constraint (24) of SUB2 can be decoupled
by comparing with the fixed “offer” price 
.

3) SUB3 Solution: We observe that the solutions to SUB1
and SUB2 have no dependence on � so that the optimal T �

co,
T �

cp, f�, 	�, and thus the corresponding optimal energy values,
denoted by E�

n,cp and E�
n,cp, can be determined based on 


according to Lemmas 2 and 3. However, these solutions will
affect to the third sub-problem of FEDL, as will be shown in
what follows.

SUB3 :

minimize
�,�>0

1
�

	�N

n=1
E�

n,co + Kl E�
n,cp + 


�
T �

co + Kl T �
cp

�


subject to 0 < � < 1, 0 < � < 1.

SUB3 is unfortunately non-convex. However, since there
are only two variables to optimize, we can employ numerical
methods to find the optimal solution. The numerical results
in Table I show that the solution �� and �� to SUB3 decreases
when � increases, which makes � decreases, as explained by
the results of Theorem 1. Also we observe that 
 as more
effect to the solution to SUB3 when � is small.

4) FEDL Solution: Since we can obtain the stationary
points of SUB3 using Successive Convex Approximation
techniques such as NOVA [34], then we have:

Theorem 2: The combined solutions to three sub-problems
SUB1, SUB2, and SUB3 are stationary points of FEDL.

The proof of this theorem is straightforward. The idea is
to use the KKT condition to find the stationary points of
FEDL. Then we can decompose the KKT condition into three
independent groups of equations (i.e., no coupling variables
between them), in which the first two groups matches exactly
to the KKT conditions of SUB1 and SUB2 that can be solved
by closed-form solutions as in Lemmas 2, 3, and the last group
for SUB3 is solved by numerical methods.

We then have some discussions on the combined solution
to FEDL. First, we see that SUB1 and SUB2 solutions can
be characterized independently, which can be explained that
each UE often has two separate processors: one CPU for
mobile applications and another baseband processor for radio
control function. Second, neither SUB1 nor SUB2 depends
on � because the communication phase in SUB2 is clearly not
affected by the local accuracy, whereas SUB2 considers the
computation cost in one local round. However, the solutions to
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TABLE II

SUMMARY OF THE SUB-PROBLEM COMPLEXITY

SUB1 and SUB2, which can reveal how much communication
cost is more expensive than computation cost, are decisive
factors to determine the optimal level of local accuracy. There-
fore, we can sequentially solve SUB1 and SUB2 first, then
SUB3 to achieve the solutions to FEDL. We also summarize
the complexities in the following table:

VI. EXPERIMENTS

This section will validate the FEDL’s learning performance
in a heterogeneous network. The experimental results show
that FEDL gains performance improvement from the vanilla
FedAvg [4] in terms of training loss convergence rate and test
accuracy in various settings. All codes and data are published
on GitHub [35].

Experimental settings: In our setting, the performance
of FEDL is examined by both classification and regression
tasks. The regression task uses linear regression model with
mean square error loss function on a synthetic dataset while
the classification task uses multinomial logistic regression
model with cross-entropy error loss function on real federated
datasets (MNIST [36], FEMNIST [37]). The loss function for
each UE is given below:

1) Mean square error loss for linear regression (synthetic
dataset):

Fn(w) =
1

Dn

�

(xi,yi)�Dn

(�xi, w	 � yi)2.

2) Cross-entropy loss for multinomial logistic regression
with C class labels (MNIST and FEMNIST datasets):

Fn(w) =
�1
Dn

� Dn�

i=1

C�

c=1

1{yi=c} log
exp(�xi, wc	)

�C
j=1 exp(�xi, wj	)

�

+
�
2

C�

c=1

�wc�2 .

We consider N = 100 UEs. To verify that FEDL also works
with UE subset sampling, we allow FEDL to randomly sample
a number of subset of UEs, denoted by S, following a uniform
distribution as in FedAvg in each global iteration. In order to
generate datasets capturing the heterogeneous nature of FL,
all datasets have different sample sizes based on the power
law in [9]. In MNIST, each user contains three of the total of
ten labels. FEMNIST is built similar to [9] by partitioning the
data in Extended MNIST [38]. For synthetic data, to allow for
the non-iid setting, each user’s data has the dimension d = 40.
We control the value of � by using the data generation method
similar to that in [39], in which user i has data drawn from
N (0, �i�) where �i � U(1, 10). Here � is a diagonal covari-
ance matrix with �ii = i�p, i � [1, d] and p = log(�)

log(d) , where
� is considered as multiplicative inverse for the minimum
covariance value of �. The number of data samples of each

TABLE III

EXPERIMENT PARAMETERS

Fig. 3. Effect of � on the convergence of FEDL. Training processes use
full-batch gradient descent, full devices participation (N = S = 100 UEs),
Kg = 200, and Kl = 20.

UE is in the ranges [55, 3012], [504, 1056], and [500, 5326] for
MNIST, FEMNIST, and Synthetic, respectively. All datasets
are split randomly with 75% for training and 25% for testing.
Each experiment is run at least 10 times and the average
results are reported. We summarized all parameters used for
the experiments in Table. III.

Effect of the hyper-learning rate on FEDL’s conver-
gence: We first verify the theoretical finding by predetermining
the value of � and observing the impact of changing � on the
convergence of FEDL using a synthetic dataset. In Fig. 3,
we examine four different values of �. As can be seen in
the figure, with all value of �, there were exist small enough
values of � that allow FEDL to converge. We also observe
that using the larger value of � makes FEDL converge faster.
In addition, even if FEDL allows UEs to solve their local
problems approximately, the experiment shows that the gap
between the optimal solution and our approach in Fig. 3 is
negligible. It is noted that the optimal solution is obtained by
solving directly the global loss function (1) as we consider the
local loss function at each UE is mean square error loss.

Effect of different gradient descent algorithms on
FEDL’s performance: As UEs are allowed to use different
gradient descent methods to minimize the local problem (2),
the convergence of FEDL can be evaluated on different
optimization algorithms: GD and mini-batch SGD by changing
the configuration of the batch size during the local training
process. Although our analysis results are based on GD,
we also monitor the behavior of FEDL using SGD in the
experiments for the comparison. While a full batch size is
applied for GD, mini-batch SGD is trained with a batch size
of 20 and 40 samples. We conducted a grid search on hk
to find the value allowing FEDL and FedAvg to obtain the
best performance in terms of accuracy and stability. Fig. 4
demonstrates that FEDL outperforms FedAvg on all batch size
settings (the improvement in terms of testing accuracy and
training loss are approximately 1.3% and 9.1% respectively
for the batch size 20, 0.7% and -0.2% for the batch size 40,
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Fig. 4. Effect of different batch-size with fixed value of Kl = 20, Kg = 800,
N = 100, S = 10, (B = � means full batch size) on FEDL’s performance.

Fig. 5. Effect of increasing local computation time on the convergence of
FEDL (N = 100, S = 10, Kg = 800).

and 0.8% and 14% for the full batch size). Besides, FEDL is
more stable than FedAvg when the small number of devices
is sub-sampling randomly during the training process. Even
though using larger batch size benefits the stability of both
FedAvg and FEDL, very large batch size can make the
convergence of FEDL slow. However, increasing the value
of � allows speeding up the convergence of FEDL in case
of GD.

Effect of increasing local computation on convergence
time: In order to validate the performance of FEDL on a
different value of local updates Kl, in the Fig. 5, we use
both mini-batch SGD algorithm with the fixed batch size
of 20 and GD for the local update and increase Kl from
10 to 40. For all Kl, even when the learning rate of
FedAvg is tuned carefully, FEDL in all batch size settings
achieve a significant performance gap over FedAvg in terms
of training loss and testing accuracy. Also in this experiment,
FEDL using minibatch outperforms FEDL using GD for
FEMNIST dataset. While larger Kl does not show the
improvement on the convergence of FedAvg, the rise of Kl has
an appreciably positive impact on the convergence time FEDL.

Fig. 6. FEDL’s performance on non-convex (MNIST dataset).

Fig. 7. Impact of UE heterogeneity on FEDL.

However, the larger Kl requires higher local computation at
UEs, which costs the EU’s energy consumption.

FEDL’s performance on non-convex problem: Even
though the convergence of FEDL is only applicable to strongly
convex and smooth loss functions in theory, we will show
that FEDL also empirically works well in non-convex case.
We consider a simple non-convex model that has a two-layer
deep neural network (DNN) with one hidden layer of size
100 using ReLU activation, an output layer using a soft-
max function, and the negative log-likelihood loss function.
In Fig. 6, we see that by using a more complexed model, both
FEDL and FedAvg achieve higher accuracy than the strongly
convex case. Although FEDL still outperforms FedAvg in case
of DNN, the performance improvement is negligible compared
to the strongly convex case, and FEDL become less stable
when using small mini-batch size.

VII. NUMERICAL RESULTS

In this section, both the communication and computation
models follow the same setting as in Fig. 1, except the number
of UEs is increased to 50, and all UEs have the same fmax

n =
2.0 GHz and cn = 20 cycles/bit. Furthermore, we define two
new parameters, addressing the UE heterogeneity regarding
to computation and communication phases in FEDL, respec-

tively, as Lcp =
maxn�N

cnDn
fmax

n
minn�N

cnDn
fmin

n

and Lco = maxn�N �min
n

minn�N �max
n

. We

see that higher values of Lcp and Lco indicate higher levels
of UE heterogeneity. The level of heterogeneity is controlled
by two different settings. To vary Lcp, the training size Dn

is generated with the fraction Dmin

Dmax �
�
1, 0.2, 0.001

�
but

the average UE data size is kept at the same value 7.5 MB
for varying values of Lcp. On the other hand, to vary Lco,
the distance between these devices and the edge server is
generated such that dmin

dmax �
�
1., 0.2, 0.001

�
but the average

distance of all UEs is maintained at 26 m.
We first examine the impact of UE heterogeneity.

We observe that the high level of UE heterogeneity has
negative impact on the FEDL system, as illustrated in Figs. 7a
and 7b, such that the total cost is increased with higher value
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Fig. 8. Pareto-optimal points of FEDL.

of Lcp and Lco respectively. We next illustrate the Pareto
curve in Fig. 8. This curve shows the trade-off between the
conflicting goals of minimizing the time cost K(�)Tg and
energy cost K(�)Eg , in which we can decrease one type of
cost yet with the expense of increasing the other one. This
figure also shows that the Pareto curve of FEDL is more
efficient when the system has low level of UE heterogeneity
(i.e., small Lcp and/or Lco).

VIII. CONCLUSIONS

In this paper, we studied FL, a learning scheme in which
the training model is distributed to participating UEs perform-
ing training over their local data. Although FL shows vital
advantages in data privacy, the heterogeneity across users’
data and UEs’ characteristics are still challenging problems.
We proposed an effective algorithm without the i.i.d. UEs’ data
assumption for strongly convex and smooth FL’s problems and
then characterize the algorithm’s convergence. For the wireless
resource allocation problem, we embedded the proposed FL
algorithm in wireless networks which considers the trace-offs
not only between computation and communication latencies
but also the FL time and UE energy consumption. Despite
the non-convex nature of this problem, we decomposed it
into three sub-problems with convex structure before analyz-
ing their closed-form solutions and quantitative insights into
problem design. We then verified the theoretical findings of
the new algorithm by experiments on Tensoflow with several
datasets, and the wireless resource allocation sub-problems
by extensive numerical results. In addition to validating the
theoretical convergence, our experiments also showed that the
proposed algorithm can boost the convergence speed compared
to an existing baseline approach.
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