
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Deep Learning Based Caching for Self-Driving
Cars in Multi-Access Edge Computing
Anselme Ndikumana , Nguyen H. Tran , Senior Member, IEEE, Do Hyeon Kim ,

Ki Tae Kim , and Choong Seon Hong , Senior Member, IEEE

Abstract—Without steering wheel and driver’s seat,
the self-driving cars will have new interior outlook and spaces
that can be used for enhanced infotainment services. For
traveling people, self-driving cars will be new places for
engaging in infotainment services. Therefore, self-driving cars
should determine themselves the infotainment contents that
are likely to entertain their passengers. However, the choice
of infotainment contents depends on passengers’ features such
as age, emotion, and gender. Also, retrieving infotainment
contents at data center can hinder infotainment services due to
high end-to-end delay. To address these challenges, we propose
infotainment caching in self-driving cars, where caching
decisions are based on passengers’ features obtained using deep
learning. First, we proposed deep learning models to predict
the contents need to be cached in self-driving cars and close
proximity of self-driving cars in multi-access edge computing
servers attached to roadside units. Second, we proposed a
communication model for retrieving infotainment contents
to cache. Third, we proposed a caching model for retrieved
contents. Fourth, we proposed a computation model for the
cached contents, where cached contents can be served in different
formats/qualities based on demands. Finally, we proposed an
optimization problem whose goal is to link the proposed models
into one optimization problem that minimizes the content
downloading delay. To solve the formulated problem, a block
successive majorization-minimization technique is applied. The
simulation results show that the accuracy of prediction for the
contents that need to be cached is 97.82% and our approach
can minimize the delay.

Index Terms—Deep learning based caching, deep learning,
self-driving car, multi-access edge computing.

Manuscript received July 31, 2019; revised December 9, 2019 and
February 1, 2020; accepted February 10, 2020. This work was supported in
part by the National Research Foundation of Korea (NRF) Grant funded by the
Korea Government (MSIT) under Grant NRF-2017R1A2A2A05000995 and
in part by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) Grant funded by the Korea Government
(MSIT) (Evolvable Deep Learning Model Generation Platform for Edge
Computing) under Grant 2019-0-01287. The Associate Editor for this article
was J. Blum. (Corresponding author: Choong Seon Hong.)

Anselme Ndikumana is with the Department of Computer Science and
Engineering, Kyung Hee University, Yongin 17104, South Korea, and also
with the Faculty of Computing and Information Sciences, University of Lay
Adventists of Kigali, Kigali 6392, Rwanda.

Nguyen H. Tran is with the School of Computer Science, The University
of Sydney, Sydney, NSW 2006, Australia.

Do Hyeon Kim, Ki Tae Kim, and Choong Seon Hong are with the
Department of Computer Science and Engineering, Kyung Hee University,
Yongin 17104, South Korea (e-mail: cshong@khu.ac.kr).

Digital Object Identifier 10.1109/TITS.2020.2976572

I. INTRODUCTION

A. Background and Motivations

RECENTLY, the automobile industries have focused on
the next stage of autonomous driving, called “self-

driving”, where cars will drive themselves without human
driver intervention [1]. To make the self-driving cars more
intelligent, they need to be equipped with smart sensors and
analytics tools that collect and analyze heterogeneous data
related to passengers on-board, pedestrians, and the environ-
ment in real-time, in which Artificial Intelligence (AI) plays
significant roles [2]. Furthermore, AI will be an empathetic
companion of passengers for assisting them and providing
personalized services. Therefore, AI will need to understand
passengers’ features [3].

In this work, we choose self-driving cars over human-driven
cars because self-driving cars already have On-Board
Units (OBUs) with Graphics Processing Units (GPUs), Field
Programmable Gate Array (FPGA), and Application Specific
Integrated Chip (ASIC) to handle in-car AI. This gives the
self-driving cars the capability to observe, think, learn, and
navigate in real driving environments [1]. Also, according to
a study on the incremental time and what activities people will
perform if everyone uses self-driving cars, it is estimated that
there will be 22 billions of hours for extra media consum-
mation in the US [4]. Therefore, with AI and OBUs that can
handle Computation, Communication, Caching, and Control
(4C) in self-driving cars, passengers will spend more time on
infotainment services such watching media, playing games,
and utilizing social networks. To support this, self-driving
cars should be equipped with recent emerging technolo-
gies for infotainment services such as AI-based games, Vir-
tual, Augmented, and Mixed Reality [5]. However, retrieving
infotainment contents from Data Centers (DCs) can worsen
infotainment content delivery services due to the associated
end-to-end delay and consumed backhaul bandwidth resource.
As an example, watching a video in a car requires three
components, namely a video source, screen, and sound system.
Therefore, if the source of the video is not in the car, the car
needs to download it from DC. Assuming the DC is distantly
located, then the infotainment content delivery services will
incur a high delay. Therefore, caching in self-driving cars will
play an important role in enhancing infotainment services.
Furthermore, for retrieving infotainment contents that need to

1524-9050 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3328-3695
https://orcid.org/0000-0001-7323-9213
https://orcid.org/0000-0002-5224-1506
https://orcid.org/0000-0002-5692-1189
https://orcid.org/0000-0003-3484-7333

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

be cached in self-driving cars, we consider Multi-access Edge
Computing (MEC) [6], [7] as a suitable technology to support
self-driving cars through caching infotainment contents near
self-driving cars. In this work, MEC servers are deployed at
RoadSide Units (RSUs).

B. Challenges for Infotainment Caching
� In human-driven cars, drivers choose the infotainment

contents to display or play. However, in the absence of
the driver, the self-driving car should determine itself the
infotainment contents to cache and play that are likely to
entertain its passengers.

� Some infotainment contents may not be appropriate for
consumption by passengers depending on their age and
area. Therefore, the self-driving car should determine
itself the infotainment contents to cache that do not
violate prohibited and restricted content access policies.

� As shown in Fig. 1 generated from YouTube demo-
graphics dataset for one month available in [8], people
have different content preferences, in which their choices
depend on their features such as age and gender. There-
fore, in the self-driving driving cars, caching decisions for
the infotainment contents should depend on passengers’
features.

� Self-driving cars will eventually deliver more heteroge-
neous infotainment contents such as movies, TV, music,
and games as well as recent emerging technologies such
as Virtual, Augmented, and Mixed Reality [5]. However,
obtaining infotainment contents from DC can induce
high car-DC delay. Therefore, self-driving cars need to
be supported by MEC servers by caching infotainment
content in close proximity to self-driving cars at RSUs.

� Self-driving cars are sensitive to delay due to their high
mobility and connection in-motion. Therefore, to achieve
less variation in transmission delay for downloading con-
tents need to be cached, at the beginning of the journey,
the self-driving car should select available MEC servers
en-route that will be used to download infotainment
contents.

C. Related Works
Content caching at macro Base Stations (BSs) and RSUs

has gained significant attention [7], [9]. However, there is
still a lack of literature on caching infotainment contents
in the cars based on passengers’ features. To address the
above challenges, in [10], the author proposed an auto-control
system for the vehicle infotainment system, where the system
analyzes the characteristics of passengers, e.g., by listen-
ing to conversations between passengers, understanding the
atmosphere or ambiance inside the vehicle during the trip,
and determining the relationship between passengers. The
results of this analysis help the system identify and deliver
appropriate infotainment contents to the passengers. However,
in [10], there is no caching approach for infotainment contents.
Always the cars have to retrieve the infotainment contents from
DC. In [11], the authors proposed a cloud-based vehicular
ad-hoc network, where both vehicles and RSUs participate

in content caching. However, introducing a cloud-based con-
troller into vehicle caching can increase the content retrieval
delay. To overcome this issue, the authors in [12] proposed
joint communication, caching, and computation. However,
the authors did not discuss how to select the contents to cache
based on vehicle occupants. Furthermore, for V2X communi-
cation, authors in [13] proposed the caching approach which is
based on machine learning, where they used different classes
of data and class-based cache replacement schemes. Other
alternatives have been proposed in [14], where the authors
considered two levels of caching at the edge servers (BSs)
and autonomous cars. In their proposal, the edge servers
inject contents into some selected cars that have enough
influence to share these contents with other cars. However,
in a realistic network environment, BSs and cars may belong
to different entities. Therefore, without an incentive mech-
anism, there is no motivation for car owners to allow BS
operator(s) to inject contents into their cars and participate
in content sharing. In [15], the authors proposed a method for
caching in an autonomous car. In their proposal, autonomous
vehicles have cache storages to cache the data collected by
the sensors, including metadata related to driving decisions.
From the cache storage, it is possible to generate a driving
decision based on similar previous cached driving decisions.
In terms of machine learning, the authors in [16] discussed
the application of machine learning in vehicular networks for
optimizing network performance. To improve the performance
of the connected vehicles, using deep reinforcement learn-
ing, the authors in [17] proposed the operations scheduling
approach. Furthermore, in terms of offloading performance,
the authors in [18] introduced a data offloading approach,
where their approach uses deep reinforcement learning. Data
offloading requires spectrum resources. Therefore, the authors
in [19] proposed multi-agent reinforcement learning for spec-
trum sharing. Also, the authors in [20] highlighted that 5G
can satisfy various requirements of connected vehicles in
terms of traffic offloading. This enables connected vehicles
to communicate with each other autonomously [21]. For the
effective data transmission, the authors in [21] introduced data
transmission approaches for vehicles using deep learning.

D. Contributions

To address the aforementioned challenges, we propose
a deep learning based caching for self-driving cars, where
caching decisions depend on passengers’ features obtained
using deep learning approaches and available communication,
caching, and computation (3C) resources. As an extended
version of our earlier work published in [22], the main
contributions of this paper are summarized as follows:

� We propose deep learning based caching for self-driving
cars as a new application of Convolutional Neural Net-
work (CNN), where caching decisions depend on pas-
sengers’ features obtained using CNN model and facial
images of the passengers. Here, we assume the CNN
model is trained and tested at DC using dataset. Then,
the CNN model is deployed at MEC servers attached
to the RSUs in close proximity to the self-driving cars,

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NDIKUMANA et al.: DEEP LEARNING BASED CACHING FOR SELF-DRIVING CARS IN MEC 3

Fig. 1. Content preferences based on users’ features [8].

where the self-driving cars can retrieve model with min-
imized delay.

� We propose a Multi-Layer Perceptron (MLP) framework
at DC to predict the probability of infotainment contents
to be requested in specific edge areas of MEC servers.
Then, the MLP prediction output is deployed at MEC
servers. During off-peak hours, each MEC server uses
MLP output to identify the infotainment contents that
have high predicted probability values of being requested
in its area, downloads and caches them. To identify the
infotainment contents that are likely to entertain its pas-
sengers and need to be cached in the self-driving car, each
self-driving car downloads and stores the CNN model and
MLP output from the MEC server. The self-driving car
uses the CNN model for predicting passengers’ features
via facial images captured by its camera. Then, the
self-driving car compares the CNN output with the MLP
output using classification [23], [24] for identifying the
contents that meet passengers’ features.

� We propose a communication model that helps the
self-driving car select available RSUs en-route. Then,
the self-driving car uses these RSUs for retrieving identi-
fied infotainment contents that meet passengers’ features
and need to be cached.

� We propose a computation model for cached infotainment
contents, where the cached contents can be served in
different formats and qualities depending on demands.
Therefore, we consider that MEC servers and self-driving
cars have computation resources, which can be used to
compute or process cached contents in different formats
and qualities.

� We formulate an optimization problem that links
the formulated models (deep learning-based caching,
communication, and computation models) into one
optimization problem whose goal is to minimize the
content downloading delay. However, the formulated
problem is shown to be non-convex. Therefore, to make
it convex, we proposed a convex surrogate problem,
which is an upper-bound of the formulated problem.
Then, we apply the Block Successive Majorization-
Minimization (BS-MM) technique [25] for solving it.

Fig. 2. Illustration of our system model.

We chose BS-MM over other optimization techniques
because BS-MM is a new technique that can decompose
the original problem into small subproblems, where each
subproblem can be solved separately.

Specifically, the novelties of our proposal over the related
works in [7], [11], [14], [26]–[31] are as follows: To the best of
our knowledge, we are the first to investigate self-driving car
caching for infotainment contents, where caching decisions are
based on passengers’ features and available communication,
caching, and computation resources.

The rest of the paper is organized as follows. We discuss the
system model in Section II and present our deep learning based
caching approach in Section III. In Section IV, we discuss the
problem formulation and solution. We present a performance
evaluation in Section V. Finally, we conclude the paper in
Section VI.

II. SYSTEM MODEL

The system model of deep learning based caching is
depicted in Fig. 2.

Data Center (DC): We assume that DC has higher compu-
tation resources than the self-driving car and RSU. Therefore,
to minimize computation time, we use DC and dataset to
make, train, and test deep learning models (CNN and MLP
models) that will be used for predicting passengers features
and infotainment contents need to be cached at the RSUs
and in self-driving cars. To reduce the communication delay
between the self-driving cars and the DC, the trained and tested
CNN model and MLP output are deployed at MEC servers
attached to the RSUs.

RoadSide Unit (RSU): As defined in 3GPP TS
22.185 V15.0.0 [32], we consider eNB-type RSU as an
entity that supports both evolved NodeB (eNB) functionalities
and V2X applications. We assume that each RSU r � R
has access to the DC via a wired backhaul of capacity
�r,DC , where R is the set of RSUs. Also, each RSU r � R
has an MEC server. Therefore, unless stated otherwise,
we use the terms “RSU” and “MEC server” interchangeably.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Furthermore, as defined in 3GPP specifications in [32],
we consider an MEC server as locally application server that
serves a certain particular geographic area n � N , where
N = {1, 2, . . . , N} is a set of geographic areas. Furthermore,
each MEC server r � R has a cache storage of capacity
cr and computational resource of capacity pr . Furthermore,
during off-peak hours, by using backhaul communication
resources, each RSU r � R downloads CNN model and
MLP output. Then, based on the MLP output, each MEC
server downloads and cache infotainment contents that have
high predicted probabilities of being requested in its area.
We use I to denote a set of infotainment contents, where each
content i � I has a size of S(i) Mb. Also, we consider that
people from different areas may need different infotainment
contents [33]. Therefore, it is more reasonable to cache
infotainment contents at RSUs based on probabilities of being
requested in particular areas.

Self-Driving Car: We consider V as a set of self-driving
cars, where each self-driving car v � V has OBU that can
handle 4C to support caching and computation of infotainment
contents for passengers. Furthermore, each self-driving v � V
can get broadband Internet service from RSU r � R through a
wireless link of capacity �v,r . Each self-driving car v � V has
a cache storage capacity of cv and computation capability of
pv . Furthermore, to predict the passengers’ features, we use
the CNN model. This helps in deciding which infotainment
contents to request and cache in the self-driving car that meet
passengers’ features. During off-peak hours, each self-driving
car v � V downloads CNN model and MLP output from
MEC server. By using the k-means and binary classification,
the self-driving car compares its CNN prediction with the
predicted output from MLP. This helps the self-driving car
identify the infotainment contents that are appropriate to the
passengers’ features. Finally, the self-driving car downloads
and caches the identified contents that meet passengers’
features.

To avoid repetitive delivery of the same contents that
require to use backhaul bandwidth, depending on demands,
we consider that the computation resources of RSU and the
self-driving car can be used to compute cached infotainment
contents. As an example, content i � with the H.264 format may
not be available in the cache storage. Instead, the cache storage
may have content i with the MP4 format of the same content.
Therefore, to satisfy the demand, by using the computational
resource, cached infotainment content i can be converted to
content i � (MP4 to H.264).

III. DEEP LEARNING BASED CACHING
IN SELF-DRIVING CARS

In this section, to identify the infotainment contents
need to be cached, we discuss the deep learning and
recommendation model in Section III-A. For retrieving the
recommended contents requires communication resources.
Therefore, in Section III-B, we discuss the communication
model. For caching downloaded contents, we present the
caching model in Section III-C. Furthermore, Based on the
demands, cached contents can be converted or transcoded to

TABLE I
SUMMARY OF KEY NOTATIONS

different formats by using computational resources, where the
computation model is described in Section III-D.

A. Deep Learning and Recommendation Model

In this subsection, we discuss MLP for predicting info-
tainment contents need to be cached at RSUs nearby the
self-driving cars, CNN model for predicting passengers’ fea-
tures, and recommendation model for identifying the contents
that meet passengers’ features and need to be cache in the
self-driving cars.

1) Multi-Layer Perceptron (MLP): We propose MLP for
predicting probabilities of contents to be requested in partic-
ular areas of RSUs. We choose MLP over other prediction
methods such as AutoRegressive (AR) and AutoRegressive
Moving Average (ARMA) models because MLP can cope with
both linear and non-linear prediction problems [34]. We use
a demographical dataset that will be described in Section V.
The input and output are described as follows:

� Input: In the dataset, we have infotainment content
names, rating, viewer’s age, gender, and location as the
input of MLP. Furthermore, for predicting the probabili-
ties of contents to be requested in specific areas, we use
x = (x1, x2, . . . xM)T to denote the input vector, where
the subscripts are used to denote the features such as
content names, rating, viewer’s age, gender, and location.

� Output: From the input, MLP tries to predict
ỹ = (�y1, �y2, . . . �yN)T as the output vector and the
subscripts are used to denote the geographic areas. Also,
in the output layer, each area n � N corresponds to one
neuron, where the output layer predicts the probabilities
of contents to be cached in each specific area n � N .

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NDIKUMANA et al.: DEEP LEARNING BASED CACHING FOR SELF-DRIVING CARS IN MEC 5

For MLP, we use l to denote the number of hidden layers,
x for the input vector, b(1), . . . , b(l) for the bias vectors,
W (1), . . . , W (l) for the weight matrices at each hidden layer,
and ỹ for the output vector. ỹ can be expressed as follows:

ỹ= f (W (l). . . f (W (2) f (W (1)x+b(1))+b(2)). . .+b(l)). (1)

where f (.) is the activation function.
In our MLP, we use the Rectified Linear Unit (ReLU) as

the activation function in all the layers except at the output
layer. We chose ReLU over other activation functions, because
it mitigates the vanishing gradient problem experienced by
MLP during the training process [35]. Furthermore, in the
output layer l, we use the softmax function as an activation
function. The purpose of the softmax function is to squeeze
the output vector ỹ into a set of probability values, where
softmax function is defined as:

so f tmax(ỹ)(l) =
e �yl

�N
n=1 e �yn

, for l = 1, . . . , N . (2)

The output layer has N neurons that correspond to N areas
of RSUs. Furthermore, for the error function, we chose the
cross-entropy error function over other error functions since
our MLP classifies the contents needs to be cached in N
geographic areas of RSUs. This problem can be considered
as a classification problem, where we interpret the output as
probabilities of the contents to be requested in each specific
area n � N . The cross-entropy error function A(y, ỹ) can be
expressed as follows:

A(y, ỹ) = �
�N

n=1
yn log �yn. (3)

A(y, ỹ) calculates the cross-entropy between the estimated
class probabilities ỹ and the ground truth y.

Finally, to reduce the communication delay between the
self-driving car and DC, as the DC may be located far from
the self-driving cars, the output of the MLP are downloaded
and stored to the RSUs based on their areas.

2) Convolutional Neural Network (CNN): In our proposal,
we do not focus on proposing new CNN model. Conversely,
we focus on a new application of existing CNN model for
automatic age, emotion, and gender prediction from facial
images [36] in caching decision. We describe the CNN work-
flow for automatic age, emotion, and gender extraction as
follows:

� Input: We consider k0 as the input image with
three-dimensional space: height, width, and the number
of color channels (red, green, and blue).

� Convolution Layer: The convolution layer applies filters
to the input regions and computes the output of each
neuron. Each neuron is connected to local regions of the
input, and using dot products between the weight and
local regions, the convolution layer produces a feature
map k j . We use k j to denote the feature map produced
after convolution layer j .

� RELU Layer: In this layer, we apply the ReLU
(max(0, k j)) as an elementwise activation function. The
ReLU keeps the size of its associated convolution layer j
unchanged.

� Max Pooling Layer: After the convolution and RELU
layers, we have a high-dimensional matrix. Therefore, for
dimension reduction, we apply a max-pooling layer as a
downsampling operation.

� Fully-Connected Layer: This layer is fully connected to
all previous neurons and is used to compute the class
scores that a face could potentially belong to. Here,
we have two classes for gender (male and female), 101
classes for age (from 0 to 101), and 8 classes for emotion
(anger, anticipation, disgust, fear, joy, sad, surprise, and
trust). In other words, we use three fully-connected layers
for age, gender, and emotion classification.

� Softmax Layer and Output: In this layer, for each facial
image, we need to interpret the output as the probability
values of classes for gender, emotion, and age that a
facial image could potentially belong to. To achieve this,
the softmax activation function is applied to the output
of the fully-connected layers.

To reduce the communication delay between the self-driving
cars and DC, the trained and tested CNN model is deployed
to the RSUs. Then, each self-driving car v � V down-
loads CNN model and uses it for predicting age, gender,
and emotion of passengers from facial images. Once the
facial image of a passenger is captured via a camera. The
self-driving car can extract features such as eyes, nose, mouth,
and chin and use them for classifying the passengers’ faces
into different age, emotion, and gender classes. As describe
in below recommendation model, this helps the self-driving
car identify the infotainment contents that meet passengers’
features as recommended contents to cache. Here, we assume
that the passengers are aware of the presence of the camera.
In other words, the self-driving cars have warning signs that
inform passengers on the presence of the cameras. The same
techniques were used in the deployment of public video
surveillance at streets or public places [37].

3) Recommendation Model: The workflow of the recom-
mendation model for self-driving cars is illustrated in Fig. 3
and described as follows:

� Step 1: Each self-driving car v � V downloads the
MLP output and CNN model from MEC server attached
to RSU.

� Step 2: By using the k-means algorithm for age
and emotion-based grouping and binary classification
for gender-based grouping on the MLP output, each
self-driving car v � V creates age, gender, and
emotion-based clusters of content consumers and gener-
ates an initial recommendation for the contents that need
to be cached and have high predicted probability values
for being requested.

� Step 3: For each new passenger u � U , the self-driving
car uses the CNN model for predicting its age, gender,
and emotion from facial image.

� Step 4: The self-driving car uses these passenger’s fea-
tures to calculate the similarity of passenger u � U with
the existing users (i.e., content consumers) in age, gender,
and emotion-based clusters. Then, based on the similarity
calculation, each passenger u � U will be assigned to a
cluster.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 3. Recommendation model for self-driving car.

� Step 5: After clustering the passenger(s), self-driving car
v � V selects top contents that have high predicted
probability values for being requested as recommended
contents to cache.

� Step 6: Finally, self-driving car v � V downloads the
recommended contents via RSU and caches them in its
cache storage cv .

For the k-means algorithm, first, we use age as numerical
data. We denote ỹn as the MLP output at each area n � N and
X = ỹn as the input of the k-means algorithm. The k-means
partitions the consumer of the contents X = {x1, . . . , xU } into
K age-based clusters X1, . . . , XK such that X1 � X2 � • • • �
XK = X . In k-means, consumers are grouped into clusters
based on their age. In addition, the clusters are disjoint Xi �
X j = �, i �= j . The goal of k-means is to assign users to
age-based clusters such that the objective function below is
minimized:

min
{X j }K

j=1

K�

j=1

�

xu�X j

�xu � �x j�2, (4)

where �x j is the centroid of cluster X j , which is defined as

�x j =

�
xu�X j

xu

|X j |
. (5)

In addition to age, consumers in the same age-based
cluster can have different choice for contents based on
emotion. Therefore, in each age-based cluster j , we use
the k-means algorithm to class the consumers of contents
in E emotion-based clusters (fear, sad, neutral, angry, dis-
gusted, surprised). Therefore, in each emotion-based cluster e,
we group users based on gender. For gender-based grouping,
we apply binary classification as described in [24], which
results in the formation of two groups, one group for females
(denoted Gfemale

j e) and another group for males (denoted Gmale
j e)

such that Gfemale
j e � Gmale

j e = �. Then, inside Gfemale
j e and

Gmale
j e clusters, which are sub-clusters of age-based cluster j

Fig. 4. Communication planning for self-driving car.

and emotion-based cluster e, the self-driving car select top
infotainment contents that have high predicted probability
values of being requested as the recommended contents to
cache. Finally, the self-driving car downloads and caches
recommended infotainment contents.

In this work, we assume that the self-driving cars and MEC
servers download and store the CNN model and MLP output
during off-peak hours. Therefore, hereafter, we only focus
on recommended infotainment contents downloading, caching,
and computing.

B. Communication Model for Retrieving Contents
Using a backhaul link of capacity �r,DC , each MEC server

downloads the infotainment contents that have high predicted
probability values for being requested in its area n � N . The
transmission delay for downloading contents from the DC to
the MEC server r is:

�DC
r =

qDC	r �
i�Ir (n) S(i)

�r,DC
, (6)

where Ir (n) for n � N denotes the set of predicted contents
that have high probability values for being requested in area
n of RSU, and qDC	r is a decision variable that indicates
whether or not MEC server r is connected to the the DC,
such that:

qDC	r =

�
1, if MEC server r is connected to the DC,
0, otherwise.

(7)

As illustrated in Fig. 4, to have less variation in the trans-
mission delay and hand-off before the self-driving car starts
its journey, it can select RSUs that will be used to download
the top-recommended contents. To discover RSUs located in
a route of the self-driving car, Access Network Discovery
and Selection Function (ANDSF) implemented in the cellular
network and described in 3GPP TS 24.312 V15.0.0 [38] can
be utilized. We assume each self-driving car v � V moves
in an area covered by macro Base Stations (BSs) and RSUs.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NDIKUMANA et al.: DEEP LEARNING BASED CACHING FOR SELF-DRIVING CARS IN MEC 7

Therefore, to obtain RSU information such as coordinate and
coverage, the self-driving car sends a request to the ANDSF
server via a BS [39]. The request includes a geographic
location of the self-driving car, speed, and direction. On the
other hand, in the ANDSF server’s feedback includes the
coordinates and coverage of all RSUs available in the direction
of the self-driving car.

Each self-driving car v computes the following distance �dr
v

between each RSU r and its route:

�dr
v = gr

vsin�r
v , (8)

where �r
v is the angle between the trajectory of movement

of self-driving car v and the straight line from RSU r � R,
and gr

v is the geographical distance between self-driving car v
and cache-enabled RSU r . In addition, each self-driving car v
computes the following distance dv

r remaining to reach each
area covered by cache-enabled RSU r � R:

dv
r = gr

vcos�r
v . (9)

We defined �r
v as the probability that RSU r � R will be

selected as a source of infotainment contents to be cached in
self-driving car v as follows:

�r
v =

�
����

����

1, if �dr
v = 0,

�dr
v

�r
if 0 < �dr

v < �r ,

0, otherwise,

(10)

where �r is the radius of the area covered by RSU r � R.
Therefore, we define qr

v as a decision variable that indicates
whether or not the self-driving car is connected to RSU r � R
as follows:

qr
v =

�
1, if �r

v > 0 and dv
r = 0,

0, otherwise.
(11)

Equations (10) and (11) ensure that once the self-driving car
v reaches an area covered by cache-enabled RSU r � R,
it immediately starts downloading the recommended infotain-
ment contents.

We assume each RSU r has a wireless channel of capacity
�v,r , where �v,r can be expressed as follows:

�v,r = qr
v Br log2

	
1 + �r |Gr

v |
2

,
v � V, r � R, (12)

where Br is the bandwidth for the car to RSU communications,
Gr

v is the channel gain between RSU r and self-driving car
v, and �r is the transmission power of RSU r . Therefore,
based on the channel capacity, the transmission delay for
downloading contents that meet passengers’ features from the
MEC server to self-driving car v is expressed as:

� r
v =

�
�i f ,�im �Ir (n) qr

v

	
S(�i f)) + S(�im)

�v,r
, (13)

where �i f � Gfemale
j e is the recommended infotainment content

for female passengers and �im � Gmale
j e is the recommended

infotainment content for male passengers in each age and
emotion-based cluster in area n, where �i f , �im � Ir (n).

Based on self-driving car’s speed, we consider tr
v as the time

required by self-driving car v � V to leave an area covered by
RSU r . We can calculate tr

v as follows:

tr
v =

2qr
v �r

µv
, (14)

where µv is the speed of self-driving car v. When � r
v < tr

v ,
the self-driving can easily download the recommended info-
tainment content in the area coverage by RSU r . However,
when � r

v � tr
v , the self-driving car can select the next RSU to

use for downloading recommended infotainment contents.
Each self-driving car v has a WiFi Router on board that

can be used to provide WiFi connectivity to its passengers.
However, in the self-driving car, passengers are free to choose
their appropriate connections. Here, we aim to minimize
delay experienced by the passengers that are inside of the
self-driving car and use WiFi connectivity of the self-driving
car for getting infotainment contents. Therefore, the instan-
taneous data rate for each passenger u via the WiFi of
self-driving car v is given by:

�v
u =

qv
u �v ��v

u 	v
u (|Uv |)

|Uv |
,
u � Uv , v � Vv , (15)

where �v is the WiFi throughput efficiency factor and |Uv | is
the number of passengers that are connected simultaneously
to the WiFi of self-driving car v, where Uv � U . We use �v
to denote the overhead related to the MAC protocol layering.
Furthermore, ��v

u is the maximum theoretical data rate that the
WiFi can handle. Furthermore, 	v

u (|Uv |) is a channel utilization
function, which is a function of the number of passengers
connected simultaneously to the WiFi [40]. 	v

u (|Uv |) is used to
determine the impact of contention over the WiFi throughput.
Also, we use qv

u as a decision variable that indicates whether
or not passenger u is connected to the WiFi of self-driving v,
specifically:

qv
u =

�
��

��

1, if the passenger u is connected to the
WiFi of the self-driving car v,

0, otherwise.
(16)

For each passenger u � Uv , based on its instantaneous data
rate �v

u , the transmission delay � v
u for downloading content i

from self-driving car v is given by:

� v
u =

�
i�Ir (n) qv

u

	
S(�i f)) + S(�im)

�v
u

. (17)

C. Caching Model for Retrieved Contents
We assume that the cache storage cv of each self-driving

car v is limited. Therefore, the sizes of the recommended
infotainment contents that need to be downloaded from the
MEC server and cached in the self-driving car must satisfy
the cache resource constraint, which is expressed as follows:

qr
v

K�

j=1

�

�

�

�i f �Gfemale
je

o
�i f
v S(�i f)) +

�

�im �Gmale
je

o�im
v S(�im)

�

�
� cv , (18)

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on March 06,2020 at 02:18:23 UTC from IEEE Xplore. Restrictions apply.

