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Fig. 8: (a) ForjKj = 4; a = 0:3; b = 0,  k = 1; 8k. (b) For jKj = 4; a = 0:3; b = 0, and  k � U[1;5]:

parameters (algorithms) for solving the local subproblem, in
contrast to Fig. 8b with the uniformly distributed k on [1,5]
to achieve the competitive utility.

4) Comparisons:In Table a, and Table b, we see the effect
of randomized parameter k for different con�guration of
MEC utility model U(�) de�ned by (a; b). For the smaller
values of� th, which captures the competence of the proposed
mechanism, we observe that the choice of(a; b) provides a
consistent offered reward for improved utility from(0:35;�1)
to (0:65;�1), which follows our analysis in Section IV-A. For
larger values of� th, we also see the similar trend in MEC
utility. For a randomized setting, we observe up to 71% gain
in offered reward against the Baseline, which validates our
proposal’s ef�cacy aiding FL.

VI. T HRESHOLDACCURACY ESTIMATION : AN
ADMISSION CONTROL STRATEGY

Our earlier discussion in Section IV and simulation results
explain the signi�cance of choosing a local� th accuracy to
build a global model that maximizes the utility of the MEC
server. In this regard, at �rst, the MEC server evokes admission
control to determine� th and the �nal model is learned later.
This means, with the number of expected clients, it is crucial to
appropriately select a proper prior value of� th that corresponds
to the participating client’s selection criteria for training a
speci�c learning model. Note that, in each communication
round of synchronous aggregation at the MEC server, the
quality of local solution bene�ts to evaluate the performance at
the local subproblem. In this section, we will discuss about the
probabilistic model employed by the MEC server to determine
the value of the consensus� th accuracy.

We consider the local� accuracy for the participating clients
is an i.i.d and uniformly distributed random variable over the
range [� min ; � max ], then the PDF of the responses can be
de�ned as f � (� ) = 1

� max �� min
. Let us consider a sequence

of discrete time slotst 2 f1; 2; : : :g, where the MEC server
updates its con�guration for improving the accuracy of the
system. Following our earlier de�nitions, at time slott, the
number of participating clients in the crowdsourcing frame-
work for FL is jK (t)j, or simply K . We restrict the clients
with the accuracy measure� (t) � � max . For K number of

participation requests, the total number of accepted responses
N (t) is de�ned asN (t) = K � F� ( t ) (� ) = K � P [� (t) � � ].
We have N (t) = K �

h
� (t)�� min
� max �� min

i
. At each time t, the

MEC server chooses� (t) as the threshold accuracy� th that
maximizes the sum of its utility as de�ned in (18) for the
de�ned parametersa � 0; b � 0 and the total participation,
�

�
1 � 10�( ax (�)+b) �

+(1 � � ) � N (t), subject to the constraint
that the response lies between the minimum and maximum
accuracy measure (�min � � (t) � � max ). Using the de�nitions
in (19), for � > 0, the MEC server maximizes its utility for
the number of participation with� accuracy as

max
� ( t )

�
�

1 � 10�(a�� (1�� (t ))+b)
�

+ (1 � � (t)) � N (t);

s.t. � min � � (t) � � max :
(36)

The Lagrangian of the problem (36) is as follows:

L(� (t); �; �) = �
�

1 � 10�(a�� (1�� ( t ))+b)
�

+ (1 � � (t))�
�

� (t) � � min

� max � � min

�
+ �(� (t) � � min )

+�(� max � � (t));
(37)

where � � 0 and � � 0 are dual variables. Problem (36) is
a convex problem whose optimal primal and dual variables
can be characterized using the Karush-Khun-Tucker (KKT)
conditions [40] as

@L
@�(t)

= ln(10) � (��a ) � 10�(a�� (1�� � ( t ))+b)

�K �
�

2� (t) � � min

� max � � min

�
+ � � � = 0; (38)

�(� (t) � � min ) = 0 ; (39)
� (� max � � (t)) = 0 : (40)

Following the complementary slackness criterion, we have

� � (� � (t) � � min ) = 0 ; � � (� max � � � (t)) = 0 ; � � � 0; � � � 0:
(41)

Therefore, from (41), we solve (36) with the KKT conditions
assuming that� � (t) < � max as an admission control strategy,
and �nd the optimal� � (t) that satis�es the following relation
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Threshold accuracy Baseline ALG. 2 ALG. 2 ALG. 2
� th r (0:3; �1) (0:35; �1) (0:65; �1)
0.2 18 5.22 5.22 5.22
0.3 12 3.48 3.48 3.48
0.4 8.99 2.602 2.6 2.61
0.5 7.19 2.79 4.3 2.2
0.6 5.99 2.38 2.87 2.1
0.7 5.13 2.84 3.17 1.9

(a) Offered reward rate comparison with randomized effect for
different (a; b) setting.

Threshold accuracy ALG. 2 ALG. 2 ALG. 2
� th (0:3; �1) (0:35; �1) (0:65; �1)
0.2 8.55 8.79 8.96
0.3 8.41 8.60 8.95
0.4 8.33 8.58 8.94
0.5 8.2 8.73 8.91
0.6 8.18 8.4 8.91
0.7 7.8 8.51 8.86

(b) Utility comparison with randomized effect for different(a; b)
setting.
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Fig. 9: Variation of local� th accuracy for different values of� given the density function,f � (� ) � U[0:1;0:9];jKj = [0 ; 50],
(a) For a = 0.35, b = -1. (b) For a = 0.45, b = -1.05.

K =
ln(10) � (��a ) � 10�(a�� (1�� � ( t ))+b) � (� min � � max )

1 � 2� � (t) + � min
:

(42)
(42) can be rearranged as

f (� � (t)) = ln(10) � (��a ) � 10�(a�� (1�� � ( t ))+b)

+K �
�

1 � 2� � (t) + � min

� max � � min

�
= 0: (43)

To obtain the value of� � (t) we will use Netwon-Raphson
method[47] employing an appropriate initial guess that man-
ifests the quadratic convergence of the solution. We choose
� �

0(t) = E (� (t)) = � max +� min
2 as an initial guess for �nding

� � (t) which follows the PDFf � (� ) � U[� min ; � max ]. Then
the solution method is an iterative approach as follows:

� �
i+1 (t) = � �

i (t) �
f (� �

i (t))
�� 2a2 � ln2(10) � 10�( a�� (1�� �

i (t))+b)
:

(44)

Numerical Analysis:In Fig. 9, we vary the number of
participating clients up to 50 with different values of� . The
response of the clients is set to follow a uniform distribution
on [0.1, 0.9] for the ease of representation. In Fig. 9a, for the
model parameters (a,b) as (0.35,-1), we see� th increases with
the increase in the number of participating clients for all values
of � . It is intuitive, and goes along with our earlier analysis
that for the small number of participating clients, the smaller
� th captures the ef�cacy of our proposed framework. Because
it is an iterative process, the evolution of� th over the rounds
of communication will be re�ected in the framework design.

Subsequently, the larger upper bound� exhibits the similar
impact on setting� th, where smaller� imposes strict local
accuracy level to attain high-quality centralized model. Also
due to the same reason, in Fig. 9b, we see� th is increasing for
the increase in the number of participating clients, however,
with the lower value. It is because of the choice of parameters
(a,b) as explained in Section IV-A. So the value of� th is lower
in Fig. 9b.

VII. C ONCLUSION

In this paper, we have designed and analyzed a novel crowd-
sourcing framework to enable FL. An incentive mechanism
has been established to enable the participation of several
devices in FL. In particular, we have adopted a two-stage
Stackelberg game model to jointly study the utility maxi-
mization of the participating clients and MEC server inter-
acting via an application platform for building a high-quality
learning model. We have incorporated the challenge of main-
taining communication ef�ciency for exchanging the model
parameters among participating clients during aggregation.
Further, we have derived the best response solution and proved
the existence of Stackelberg equilibrium. We have examined
characteristics of participating clients for different parametric
con�gurations. Additionally, we have conducted numerical
simulations and presented several case studies to evaluate the
framework ef�cacy. Through a probabilistic model, we have
designed and presented numerical results on an admission
control strategy for the number of client’s participation to
attain the corresponding local consensus accuracy. For future
work, we will focus on mobile crowdsourcing framework to
enable the self-organizing FL that considers task of�oading
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strategies for the resource constraint devices. We will consider
the scenario where the central coordinating MEC server is
replaced by one of the participating clients and devices can
of�oad their training task to the edge computing infrastructure.
Another direction is to study the impact of discriminatory pric-
ing scheme for participation. Such works can narrate towards
numerous incentive mechanism design, such as offered tokens
in blockchain network [17]. We also plan to further investi-
gate on participating client’s behavior, in terms of incentive
and communication ef�ciency, to incorporate cooperative data
trading scenario for the proposed framework [48], [49].

APPENDIX A
KKT SOLUTION

The utility maximization problem in (21) is a convex
optimization problem whose optimal solution can be obtained
by using Lagrangian duality. The lagrangian of (21) is

L(r; x (�); �) = �
�

1 � 10�(ax(�)+b)
�

� r
X

k2K

(1 � � �
k (r ))

+ � [� (1 � maxk � �
k (r ) � x(�)]

(A.1)

where� � 0 is the Lagrangian multiplier for constraint (22).
By taking the �rst-order derivative of (A.1) with respect to
x(�) and �, KKT conditions are expressed as follows:

@L
@x(�)

= a�e �(a( x(�))+b) � � � 0; if x(�) � 0: (A.2)

@L
@�

= [ � (1 � maxk � �
k (r )) � x(�)] � 0; if � � 0: (A.3)

By solving (A.2), the solution to the utility maximization
problem (21) is

x � (�) =
� ln(�=a� ) � b

a
: (A.4)

From (A.3), the Lagrangian multiplier� is as

� � = a�e [a� (1�max k � �
k (r ))+b] : (A.5)

Thus, from (A.4) and (A.5) the optimal solution to the utility
maximization problem (21) is

x � (�) = � (1 � maxk � �
k (r )): (A.6)
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