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Abstract 

In this paper, we consider the emerging problem of joint resource allocation and minimizing carbon 

footprint problem for video streaming service in Fog computing. To solve the large-scale optimization, 

we develop a distributed algorithm based on the proximal algorithm. The numerical results show that our 

algorithm converges to near optimum within fifteen iterations, and is insensitive to step sizes. 

1. Introduction 

   Recently, Cisco has introduced Fog computing as a 

new paradigm which can transform the network edge 

into a distributed computing infrastructure for 

applications that take advantage of the billions of 

devices already connected to the Internet of Things (IoT) 

[1]. The Fog is located below the Cloud in a widely 

distributed manner and serves as an optimized transfer 

medium for services and data within the Cloud. Since 

Fog has wide geographical distribution, the Fog 

paradigm is well positioned for big data and real time 

analysis and it supports mobile computing and data 

streaming. In Fog Computing model, data, processing 

and applications are concentrated in devices at the 

network edge, rather than existing almost entirely in the 

Cloud, to isolate them from the Cloud systems and 

place them closer to the end-user. Putting computing 

resource near the edge allows Fog to perform low 

latency processing while latency tolerant and large 

scope aggregation can still be efficiently performed on 

powerful resources in the core of the Cloud. Data center 

resources may still be used with Fog computing, but 

they do not dominate over the entire picture. 

  In industry, many companies are ready for adopting 

Fog computing. Any company that delivers content can 

start using Fog computing. A good example is Netflix 

who is able to reach a large number of globally 

distributed customers. The delivery of video-on-

demand service would not be efficient enough if it is 

based on the data management in one or two central 

data centers. Fog computing thus allows providing very 

large amounts of streamed data by delivering the data 

directly into the vicinity of the customer [2]. 

  Today, geographical resource allocation and energy 

cost are managed independently, leading to poor 

performance and high costs in many cases [3]. The 

objectives of the two decisions can also be misaligned 

and lead to sub-optimal equilibria. In this paper, we 

study the joint resource allocation and minimizing 

carbon footprint problem for streaming service in Fog 

computing. We assume that physical devices called Fog 

computing nodes (FCNs) are placed in the network 

infrastructure to deliver video streaming service from 

content providers. For example, streaming services are 

hosted at the network edge such as ``smart'' routers 

and switches with more application-level functionality, 

or even end devices such as set-top-boxes or access 

points. By doing so, Fog reduces service latency, and 

improves QoS. FCN aggregates video demands from 

nearby end users. As the tenants of a Fog provider, the 

content providers want to delivery content from the data 

center as much as possible to FCN to increase their 

utility. Because the applications and end users are 

heterogeneous, the utility varies significantly depending 

on the geographical distribution of end-users. Thus, we 

need to control the fraction of traffic (from huge number 

of end-users to data center) to maximize the utility of 

content providers and minimize the carbon footprint at 

the data center. 

  In a large scale systems, fast distributed resource 

allocation and social welfare maximization are critical 

problems. Traditional solutions to such problems rely on 

primal/dual decomposition and gradient methods [4], 

however these methods have slow convergence speed 

and sensitivity to step sizes and require strict convex 

assumptions. Related work has considered geo-

distributed and large scale system such as work in [5] 

for video streaming in cloud computing. In [5], the 

authors propose a distributed algorithm with fast 

convergence speed but it requires strict convex 
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assumptions like primal/dual decomposition and 

gradient methods. Here, the joint resource allocation 

and minimizing carbon footprint problem is a very large-

scale convex optimization due to large number of FCN 

(dozen of thousand devices [1]). Thus, for reasons of 

performance and scalability, we introduce a distributed 

solution for the joint resource allocation and minimizing 

carbon footprint problem. Our algorithm is based on 

proximal algorithms [6], a powerful algorithm that 

recently has been applied in many large scale 

distributed convex optimization problems. Comparing 

to conventional methods such as gradient methods, 

proximal algorithms have faster convergence speed 

with modest accuracy, insensitivity to step sizes, and 

robustness without strong assumptions such as strict 

convexity of the objective function. 

 

2. System model 

    We consider a content provider run Fog computing 

services over a data center and 𝑁  Fog Computing 

Nodes (FCNs) are located at the edge of network in 

distinct geographical regions to serve video streaming 

for end users as illustrated in Fig. 1. We assume that 

FCNs send a request to the data center. After the data 

center have finished serving request, it sends the 

response video streaming back to FCNs. We use xn  to 

denote the amount of video streaming to FCNn from the 

data center. We assume that the reservation of egress 

network bandwidth from the data center to FCNs has 

already been enabled by the detailed engineering 

techniques proposed in [7]. Thus, the data center can 

guarantee the bandwidth to serve video streaming of 

clients at FCNs. To model the social welfare, we 

consider both the carbon footprint cost at the data 

center and utility of the content provider, which are 

detailed below. 

   We consider an affine utility function that is the de 

facto utility function widely used in the literature [8]. An 

affine utility function at FCNn has the following form: 

Un(xn)  =   αnxn.               (1) 

Where αn is a conversion factor that translates user-

perceived request video streaming into utility (e.g. 

revenue). Because the applications and end users are 

heterogeneous, αn  varies significantly depending on 

the geographical distribution of end-users. 

For the environmental cost, the carbon footprint of 

energy at the data center can also be taken into account. 

 

 

Fig.1.Multiple Fog Computing Nodes with a Data Center. 

The cost function  C(⋅) considered in existing work [3] 

is given as follows 

   C(y) =  c ⋅  r ⋅  PUE ⋅  P( y),         (2) 

where c denotes the carbon footprint cost in term of 

$/g at the data center, r  is the average carbon 

emission rate g/KWh, PUE  is the power usage 

effectiveness and P( y) represents the server power at 

the data center. P( y) represents the server power at 

the data center, which is a function of the total of 

requested video streaming y  and can be obtained 

empirically. From a measurement study by Google [9], 

a commonly used server power function is given by 

   P( y) =   ⋅  P{idle}  +  (P{peak} − P{idle}) ⋅  y ⋅ κ ,    (3) 

where κ  is a conversion factor that translates 

requested video streaming into workload,  is workload 

capacity of the data center, P{idle} is server idle power 

and P{peak} is peak power. 

    

3. Joint Resource Allocation and Minimizing Carbon 

Footprint Problem  

   We now formulate joint resource allocation and 

minimizing carbon footprint problem. Putting the utility 

and cost function, the social welfare maximization 

problem can be written as 

 max
{xn≥ 0,y≥ 0}

    ∑ Un(xn)  −  C(y)𝑁
𝑛=1    ,        (4) 

∑ 𝑥𝑛 = 𝑦 ≤  /𝑁
𝑛=1 κ,             (5) 

The constraint is the capacity constraint at data center. 

If Problem (4) is small then it would be easy to solve. 

However, in Fog, Problem (4) is an extremely large-

scale optimization problem. Thus, we need a distributed 

algorithm to solve such a large scale problem. 

   We rewrite Problem (4) as follows 

max
{xn≥ 0,zn≥ 0}

    ∑ Un(xn) 𝑁
𝑛=1 − C( ∑ zn 𝑁

𝑛=1 )  ,        (6) 

𝑥𝑛 = 𝑧𝑛 , ∀𝑛,                   (7) 

∑ 𝑧𝑛 ≤  /𝑁
𝑛=1 κ,                 (8) 

Where 𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑁] is an auxiliary variable. Since 

Problem (6) is a sharing problem, we have the iterations 

based on proximal algorithms as follows 

𝑥𝑛
𝑘+1: =  𝑝𝑟𝑜𝑥𝜆 𝑈𝑛

 (𝑧𝑛
𝑘 − 𝑢𝑛

𝑘), ∀ 𝑛 ,         (9) 
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𝑧𝑘+1: =  𝑝𝑟𝑜𝑥𝜆 𝐶  (𝑥𝑘+1 + 𝑢𝑘 ),           (10) 

𝑢𝑛
𝑘+1: = 𝑢𝑛

𝑘+1 + 𝑥𝑛
𝑘+1 − 𝑧𝑛

𝑘+1 , ∀ 𝑛,         (11) 

where  𝑥  is the vector [𝑥1, 𝑥, … , 𝑥𝑁] , 𝑢𝑛  is an 

interpretation of Lagrange multiplier. The proximal 

operator 𝑝𝑟𝑜𝑥 is defined by 

𝑝𝑟𝑜𝑥𝜆 𝑓(𝑥𝑘) =  min
𝜆𝑓

 𝑓(𝑥) +  1/(2𝜆)   ∥  𝑥 −  𝑥𝑘 ∥2
2 ,  (12) 

where 𝑓 ∶  ℜ𝑛  → ℜ ∪  {+ ∞ } is a closed proper convex 

function, 𝑘 is the iteration counter, and 𝑥𝑘 denotes the 

kth iteration of the algorithm, ∥ ⋅∥2
2  is the usual 

Euclidean norm [6]. Thus, we have a distributed 

algorithm (Algorithm 1) to solve the joint resource 

allocation and minimizing carbon footprint problem. 

 

Algorithm 1: Optimal Distributed Solution for (6) 

1: Choose randomly initial values  u0,  x0, z0   

2: while not convergence 

3:    Each FCNn updates request video streaming 𝑥𝑛
𝑘+1         

by using x-update in (9). Send its request 𝑥𝑛
𝑘+1 and 

𝑢𝑛
𝑘 to the data center. 

4:    The data center collects request video streaming 

𝑥𝑛
𝑘+1 and 𝑢𝑛

𝑘   from all FCN and updates𝑧𝑘+1 by using 

z-update in (10). Then, the data center sends response 

video streaming 𝑥𝑛
𝑘+1 with 𝑧𝑛

𝑘+1 to FCNn for all n. 

5:    Each FCNn updates dual value 𝑢𝑛
𝑘+1 by using u-

update in (11). 

6: end while 

   Numerical results: The numerical parameters are set 

as follows: c = 19 ⋅ 10−6, r = 562, PUE = 1.5,  P{peak} =

200 , P{idle} = 100 W, αn = Uniform(0,1000) ⋅ Fig. 2 plots 

the convergence of objective values. Since the number 

of iterations is small while the number of user 100, it 

suggests that our algorithm can solve a large-scale 

problem effectively. 

 

5. Conclusion 

   We study the joint resource allocation and 

minimizing carbon footprint problem for streaming 

service in Fog computing. We formulated the problem 

as a general convex optimization, where the location 

diversity of requested video streaming utility and costs 

are modeled. We developed an efficient distributed 

algorithm based on the proximal algorithm to 

decompose the large scale global problem into many 

sub-problems, each of which can be quickly solved. 

The numerical results are conducted to evaluate the 

algorithm's performance 

 

.  

Fig.2.Convergence of Algorithm 1. 
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