
A Heuristic Approach for Viral Marketing Cost
Optimization in Social Networks

Ashis Talukder, and Choong Seon Hong
Department of Computer Science and Engineering, Kyung Hee University, South Korea

Email: {ashis, cshong}@khu.ac.kr

Abstract

Nowadays, social networks have become a very powerful means of Viral Marketing (VM), and the Influence Maximization
(IM) is such a viral marketing approach which determines the viral marketing profit. The profit is defined by the maximum number
of nodes that can be influenced by the seed nodes in the network. However, most of the existing IM models assume that the
seed users are initially activated and thus, do not focus on optimizing the Viral Marketing Cost (VMC) which is defined by the
minimum number of nodes required to activated the seed users. Although some Reverse influence Maximization (RIM) models
are available in the literature, their accuracy is not satisfactory. Thus, in this paper, we propose a Heuristic RIM (H-RIM) model
in which Independent Cascade (IC), Linear Threshold (LT), and Greedy models are applied together to minimize the VM cost.
The proposed H-RIM model handles RIM-challenges efficiently as well as returns optimized VM cost. The simulation on real
network datasets shows that the proposed model outperforms the existing models.

1. Introduction
Nowadays, social networks are considered to be the most

robust platform for Viral Marketing (VM), and the Influence

Maximization (IM) is such a viral marketing tool that es-

timates influential nodes which can maximize the influence

diffusion in the network [1]. The influence is measured by the

maximum number of nodes that can be activated by the seed

users when they are assumed to be activated initially. How-

ever, most of the IM models focus on profit and thus, ignore

the seeding cost or Viral marketing cost (VMC). Thereafter, a

Reverse Influence Maximization (RIM) technique is emerged

to minimize the VM cost [2], [3]. However, the existing RIM

models fail to exhibit the expected accuracy to minimize the

VM cost and meet the RIM challenges [4].

Therefore, in this paper, to address the VMC Minimization

problem, we propose a Heuristic RIM (H-RIM) model which

jointly employs the Independent Cascade (IC) model, the

Linear Threshold (LT) model [1], and a greedy method. The

key contributions of this paper are stated below.

1) We employ the traditional IC model in reverse order for

node activation in the H-RIM model. The use of the IC

and greedy models resolve most of the RIM challenges.

2) We introduce a cost minimization heuristic which is

used in the influence weight estimation and is applied

with the greedy optimization to minimize the VM cost.

3) The simulation, done on real datasets, shows that the

proposed model outperforms the existing models.

2. Existing Study
The significant development in the Influence Maximization

(IM) research is contributed by Kempe et al. [1] who for-

mulate the Linear Threshold (LT) and Independent Cascade

(IC) models. After that, many profit maximization models

are proposed using the IM technique. A profit maximization

model by increasing the product adoption is proposed in [5].

Lu et al. [6] propose a product adaptation model as well;

however, they consider the product price as a criterion to

adopt a product. While maximizing the profit, Zhu et al. [7]

observe that the profit and influence cannot be maximized

together whereas, Goyal et al. [8] propose a recommendation-

based profit maximization model. However, none of the

above studies addresses the VM cost estimation problem.
Then, the Reverse Influence Maximization (RIM) models

which determine the minimum number of nodes needed to

activate seed nodes, are proposed in [2] and [3]. However,

the accuracy of the existing RIM models is not satisfactory

and thus, in this paper, we propose a Heuristic RIM (H-RIM)

model for VMC Minimization. The proposed model meets

RIM challenges efficiently and estimates the optimized VM

cost as well.

3. System Model
Here, we maximize the viral marketing profit in social

networks by minimizing the cost. To formulate the VMC

minimization problem, we take a social network, G(V,E)
having a vertex set V , and an edge set E. We denote the

in-neighbor and out-neighbor sets of any node v by Din
v and

Dout
v , respectively. For a given seed set S, the viral marketing

cost, denoted as λ(S), is defined by the number of users

requires to activate the seed nodes. The objective of the VMC

minimization problem is to minimize the λ(S).

Definition 1 (The VMC minimization Problem). Given a

social network G(V,E) and a seed set S of size k, the aim

of the VMC minimization problem is to minimize the viral

marketing cost λ(S), defined by the minimum number of

nodes that must be activated in order to activate all the seed

nodes in S. �
4. The Proposed Heuristic RIM (H-RIM) Model

Here, we propose the Heuristic Reverse Influence Maxi-

mization (H-RIM) Model to estimate the optimal VM cost.

First, the partial VM cost λ(u) for all u ∈ Din
v is calculated

by using the IC model used in a retrograde manner and then,

the partial cost is optimized by the greedy heuristic technique

and the LT model to estimate λ(v).
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Algorithm 1: The H-RIM Algorithm

Input: G(V,E), S
Result: λ(S)

1 Λ(S) := ∅
2 for v ∈ S do
3 Λ(v) := ∅, Anew := {u};

4 while u ∈ Anew do
5 Atarget := Din

u , Acurrent := ∅,Λ(u) := {u};

6 while w ∈ Atarget do
7 if w is activated with probability p then
8 Acurrent := Acurrent ∪ {w}; /* Node

activated by RIC model */

9 end
10 end
11 Anew := Anew − Λ(u)− Λ(S); /* Already

activated node is excluded */

12 Λ(u) := Λ(u) ∪Anew;

13 end
14 Av := A minimum set of u ∈ Din

v with max w̃uv

to activate v; /* Greedy optimization */

15 Λ(v) := ∪y∈Av
Λ(y);

16 Λ(S) := Λ(S) ∪ Λ(v); /* The VM cost set */

17 end
18 λ(S) :=

∣∣Λ(S)
∣∣; /* Final VM cost */

19 return λ(S);

A. Partial VM cost estimation

The traditional IC model is applied in reverse order, and

the node activation is performed to estimate λ(u), as depicted

in Figure 1 (the left block). We calculate λ(u) hop by hop

and initially, we assume that only u is the only activated node

and determine which nodes are necessary to activate u by IC

model. Thus, the newly and total activated nodes are listed

as,

Anew = Λ(u) = {u} (1)

For each u ∈ Anew, the target in-neighbor set, Atarget(u) is

calculated as:

Atarget(u) = Din
u (2)

Then, each w ∈ Atarget(u) is given a single chance to

activate u with a probability p. Here, the value of p is selected

as p ∈ {0.01, 0.1} [1], [9]. If the node w activates the node

u then w is included in Acurrent. Then, at the end of hop,

we update the newly and total activated nodes for the next

hop as:

Anew = Acurrent − Λ(u) (3)

Λ(u) = Λ(u) ∪Acurrent (4)

Here, we exclude the nodes which are already activated

in any previous hop as shown in (3). The same process

is repeated for the next in-neighbor hops of u for each

of the newly activated node w and so on. The IC process

terminates when there is no newly activated node at any hop

(Anew = ∅).
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Figure 1: The working strategy of the H-RIM model.

B. The Optimization Model

Now, to compute Λ(v), we will have to select a set Av

of minimum number of u ∈ Din
v to activate v as shown in

Figure 1 (the right block) by the greedy method.

We use the LT model in reverse order in which the influ-

ence weight is estimated by a combination of the heuristic

weight and the social influence weight as,

hwuv = αhuv + (1− α)wuv (5)

where, α ∈ (0, 1), is a constant, and wuv is the social influ-

ence weight computed by the degree centrality method [1].

We contribute a heuristic influence huv , which is the

normalized value of inverse proportional to the estimated

|Λ(u)|. The lower cost |Λ(u)|, of u indicates the higher value
of huv . The threshold θv is selected by the majority voting

model (for example, in Figure 1, θv = 3) [10]. Finally, we

calculate the optimized VM cost as,

Λ(v) = ∪
u∈Av

Λ(u) (6)

λ(S) =
∣∣Λ(S)

∣∣ =
∣∣∣∣ ∪v∈S

Λ(v)

∣∣∣∣ (7)

The H-RIM model is stated in the Algorithm 1 and the

running time of the algorithm is given by,

C ≤ k(d(d+ d)) ≈ O(kd2) (8)

Theorem 1. The VMC minimization problem is NP-Hard.

Proof. The greedy technique used in the H-RIM model

to solve the VMC minimization problem is the Knapsack

technique, and at each time, the model selects an in-neighbor

u with maximum influence hwuv . Moreover, the Knapsack

problem is a well-known NP-Hard [11] problem and hence,

our VMC minimization problem under the HM model is also

NP-Hard.

5. Performance Evaluation
We evaluate the performance of the proposed H-RIM

model by using datasets of two important social networks.

A. Data Collection

We collect real datasets of the Epinions1 and the Facebook2

network from the SNAP dataset collections [12], as shown

in Table I.

1https://snap.stanford.edu/data/soc-Epinions1.html
2https://snap.stanford.edu/data/egonets-Facebook.html
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Table I: Datasets

Network Name Nodes Edges
Epinions 75, 879 508, 837

Facebook 4, 039 88, 234

B. Simulation Setup
We employ the Monte Carlo (MC) simulation by using

Python codes. The seed set S is generated randomly and the

probability is chosen as p ∈ {0.1, 0.01} [1]. We select θv
by the Heuruistic Individual (HI) model [13] and α = 0.5
[14]. We compare the results with that of existing R-RIM

and RLT-RIM models [2], [3].
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(b) Facebook dataset.

Figure 2: The estimated VM cost for different values of k.
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(b) Facebook dataset.

Figure 3: The running time for different values of k.

C. Viral Marketing Cost
The estimated viral marketing cost for different datasets

is presented in Figure 2. The figure shows that the proposed

H-RIM model has VM cost 2 − 3 times smaller than that

of the existing R-RIM and RLT-RIM algorithms, for both

the datasets. This optimized result is due to the use of the

heuristic greedy optimization technique.

D. Running Time
Figure 3 depicts the running time requirement of the

proposed algorithm along with the existing R-RIM and RLT-

RIM models for both the datasets. The R-RIM requires the

least time, and the RLT-RIM consumes the highest time. On

the other hand, the running time of the proposed H-RIM

model lies between that of two existing models.

E. Handling RIM Challenges
The proposed H-RIM model shows better accuracy by

handling the RIM challenges efficiently as well as providing

the minimized VM cost. The use of IC model in the node

activation process addresses the issue of Basic Network

Components (BNC) and the setting terminating condition

[2]. The greedy model takes care of the NP-Hardness of the
problem. The use of the majority voting model to assign the

node threshold resolves the insufficient influence [2].

6. Conclusion
In this paper, we propose a Heuristic Reverse Influence

Maximization (H-RIM) model to address the Viral Marketing

Cost (VMC) minimization problem. We use the Independent

cascade (IC) model in reverse order for node activation

process and the greedy heuristic model along with the LT

technique to optimize the VM cost. We evaluate the perfor-

mance of the proposed model by using the datasets of two

widely known social networks, and the empirical result shows

that the proposed model outperforms the existing models.
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