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Abstract—In this paper, a novel framework is proposed for
joint subchannel assignment and power allocation in the uplink
of cognitive femtocell network (CFN). In the studied model, fem-
tocell base stations (FBSs) are deployed to serve a set of femtocell
user equipments (FUEs) by reusing subchannels in a macrocell
network. The problem of optimal allocation of subchannels and
transmit power is formulated as an optimization problem in
which the goal is to maximize the overall uplink throughput while
guaranteeing minimum rate requirement of the served FUEs and
macrocell base station (MBS) protection. To solve this problem, a
novel framework based on matching theory is proposed to model
and analyze the competitive behaviors among the FUEs and FBSs.
Using this framework, distributed algorithms are implemented
to enable the CFN to make decisions on subchannel allocation
and power control. The developed algorithms are then shown to
converge to stable matchings. Simulation results show that the
proposed approach yields a notable performance improvement, in
terms of the overall network throughput and outage probability
while requiring only a small number of iterations for convergence.

I. INTRODUCTION

The use of small cell networks based on the pervasive
deployment of low-power, low-cost femtocell base stations
(FBSs) is seen as a promising technique to improve the
capacity, and enhance the coverage for indoor and cell edge
users in next-generation wireless cellular networks [1]. In
order to utilize the limited licensed spectrum efficiently, FBSs
must reuse the same orthogonal frequency multiple access
(OFDMA) radio resources as the macrocell network [2]. Fre-
quency reuse in two-tier networks composed of FBSs coexist-
ing with macrocell base stations (MBSs) can lead to a problem
of co-channel interference thus requiring a smart adaptation of
scheduling algorithms to mitigate the co-channel interferences
among users using the same channel [2]. Cognitive radio
(CR) can be a promising technology to realize such flexible
interference management. A femtocell network that reuses
subchannels using CR technology is commonly known as
cognitive femtocell network (CFN) [3].

A CFN can operate successfully and cost-efficiently by
using one of two cognitive radio network (CRN) spectrum
sharing approaches: overlay and underlay spectrum access
approaches [3]. In the overlay spectrum access, secondary
users (SUs) can use the licensed spectrum when it is vacant and
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not occupied by the licensed primary users (PUs). In underlay
spectrum access, SUs are allowed to simultaneously operate
in frequency bands where PUs are active, while the overall
interference from SUs’ occupancy on the same frequency band
to the PU receiver should be kept below a given threshold. In
this approach, entities are assumed to have knowledge of the
interference caused by transmitters in the primary network [4].
Here, our focus is on CFNs which are based on a spectrum
underlay approach such as in [4]–[6].

To reap the benefits of CFN deployment, some technical
challenges such as interference management, efficient spec-
trum usage, and cell association must be addressed [2], [3], [7]
and [8]. Several recent studies have studied resource allocation
in uplink OFDMA cognitive femtocell network [4]–[6], [9]–
[14]. Power control in the uplink of two-tier networks has
been studied in [4], [5] and [9]. The works in [5] and [9]
only considered access and power control in the single-channel
operation to maximize total network throughput. Distributed
power control for spectrum-sharing femtocell networks using
a Stackelberg game is proposed in [4]. However, these works
in [4], [5] and [9] assume that subchannel allocation is pre-
determined and not optimized. Subchannel assignment have
been studied for uplink OFDMA-based femtocell network
in [12]–[14]. However, such existing works do not consider
power control in proposed resource allocation algorithms in
which transmit power of users are fixed and not optimized.
Moreover, the problem of joint subchannel assignment and
power allocation in uplink OFDMA-based femtocell networks
was investigated in [6], [10] and [11]. A distributed power
control and centralized matching algorithms for subchannel
allocation is proposed in [10] that leads to fair resource allo-
cation for uplink OFDMA femtocell networks. Additionally,
the authors in [6] investigated the joint uplink subchannel
and power allocation problem in cognitive small cells using
cooperative game theory. However, none of works in [6], [10]
and [11] studies resource allocation in which both users and
base stations participate in the subchannel association problem.

The main contribution of this paper is to introduce a novel
framework for joint subchannel assignment and power alloca-
tion in the uplink of CFNs. In particular, our contributions can
be summarized as follows:
• We investigate the joint subchannel and power allocation

problem in the uplink of an underlay CFN, and we show
that, using centralized optimization, such a problem is
NP-hard.
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Figure 1: System architecture of a cognitive femtocell system.

• To overcome this complexity, we formulate the problem
as a matching game between FUEs and FBSs which
enables us to properly capture competitive behaviors of
FUEs and FBSs while seeking to maximize the overall
uplink throughput.

• To solve this game, we design an algorithm that jointly
allocate subchannels to FUEs and allocates transmit
power level to FUEs. Then, we prove that the proposed
algorithms converge to the group stable matchings.

• Simulations results show that the proposed algorithms
converge to stable outcomes for whole system after a
small number of iterations. These results also show that
the proposed approach yields a performance improve-
ment, in terms of the overall network throughput.

The rest of this paper is organized as follows: Section
II explains the system model and problem formulation. The
optimization problem is solved based on dynamic matching
game in Section III. In Section IV, we study convergence
and stability of the proposed algorithms. Section V provides
simulation results. Finally, conclusions are drawn in Section
VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model
Consider the uplink of an OFDMA cognitive femtocell

network composed of a set M = {1, 2, ...,M} of FBSs
that operate inside the coverage of a macrocell network and
serve a set N of FUEs as shown in Fig. 1. Each FBS
m ∈ M is associated to a set Nm = {1, 2, ..., Nm} of
FUEs,

∑
m∈MNm = |N |. These FBSs adopt a closed access

control mechanism which only allows registered FUEs to
use the FBSs’ services [15]. For notational convenience, the
MBS is indexed by 0. The OFDMA system has a bandwidth
of B divided into a set K = {1, 2, ...,K} of subchannels
which are reused at the CFN using underlay spectrum access
model. These subchannels are correspondingly occupied by K
macrocell user equipments (MUEs). All subchannels are as-
sumed to be independent block fading channels and orthogonal

Table I: Summary of the notations.

Notation Meaning
M Set of FBSs.
N Set of FUEs.
Nm Set of FUEs belonging to FBS m.
K Set of subchannels or MUEs.
Km Set of subchannel available for FBS m.
Gk Set of FUE-FBS pairs allocating subchannel k.
µm Matching game for subchannel allocation in FBS m.
�n,m Preference relation of FUE n in FBS m.
�k,m Preference list of subchannel k.
Y Matching matrix with {ykn,m} elements.
P Transmit power matrix with {Pk

n,m} elements.

subchannels. The channel fading is assumed to follow an i.i.d
Rayleigh channel model. FBSs are connected to a cognitive
femtocell management (CFM) that acts a coordinator and
spectrum manager. We let Km ⊂ K be the set of subchannel
available for FBS m as allocated by the CFM. FBSs and FUEs
are assumed to be selfish and rational entities that seedk to
maximize their individual objectives. Moreover, we assume
that the FBSs and the MBS have knowledge about channel
state information of FUEs. For convenience, a summary of
the notations used is shown in Table I.

B. Problem formulation
We first consider the FUE’ QoS demand and the MBS pro-

tection. Then, we formulate the problem of optimal subchannel
assignment and power allocation.

FUE QoS. We consider the minimum data rate requirement
of the served FUEs. When FUE n is served by FBS m on a
subchannel k with transmit power P k

n,m, the data rate of FUE
n will be given by

Rk
n,m(Y,P ) = Bklog2(1 + Γk

n,m(Y,P )), (1)

in which Bk is bandwidth of subchannel k, Γk
n,m(Y,P ) is

the signal-to-interference-plus-noise ratio (SINR) of FUE n
associated with FBS m on subchannel k.

The SINR Γk
n,m(Y,P ) is given by

Γk
n,m(Y,P ) =

ykm,ng
k
n,mP

k
n,m

Ik,inn,m + gkk,mP
k
k,0 + σ2

, (2)

where Ik,inn,m =
∑M

m′=1,m′ 6=m

∑Nm′
n′=1 y

k
m′,n′g

k
n′mP

k
n′,m′ is the

total interference from other femtocells to FBS m on sub-
channel k; P k

n,m and P k
n′,m′ are transmit powers of FUE

n ∈ Nm and FUE n′ ∈ Nm′ , (m
′ 6= m) on subchannel k,

respectively; P k
k,0 is transmit power of MUE k on subchannel

k; gkk,m is the channel power gain on subchannel k from MUE
k to FBS m; gkn,m and gkn′m are, respectively, channel power
gains on subchannel k from FUE n ∈ Nm and from FUE
n′ ∈ Nm′ , (m

′ 6= m) to FBS m; Y = [ykm,n]M×N×K be
the subchannel allocation matrix, where ykm,n = 1 means that
subchannel k is assigned to FUE n, and ykm,n = 0 otherwise.
Moreover, P = [P k

m,n]M×N×K is the power allocation matrix.



Without loss of generality, the noise power σ2 are assumed to
be equal at all FBSs.

To satisfy the QoS of FUEs, we assume that capacity of
each FUE must be greater than a minimum rate requirement
that is defined as follows:

Rk
n,m(Y,P ) ≥ Rmin

n , (3)

where Rmin
n is predefined parameter of the FUE n.

MBS protection. In our model, each MUE seeks to transmit
its data with fixed power level under a given QoS constraint
such as delay or SINR. In addition, the MUE’s QoS demand is
predefined by converting to the total interference from FUEs
to the MBS on each subchannel k with threshold Ik,th. In order
to protect the MBS on subchannel k, the following condition
must be satisfied:

M∑
m=1

Nm∑
n=1

ykn,mg
k
n,0P

k
n,m ≤ I

k,th
0 ,∀k ∈ K, (4)

where
M∑

m=1

Nm∑
n=1

ykn,mg
k
n,0P

k
n,m is the total interference gener-

ated by all FUEs to the MBS on subchannel k and gkn,0 is the
channel power gain on subchannel k from FUE n to MBS.

Next, the problem of subchannel allocation and power
control is formulated as an optimization problem which seeks
to maximize the overall network throughput, as follows:

OPT:
max.
(Y ,P )

M∑
m=1

Nm∑
n=1

K∑
k=1

Rk
n,m(Y,P ) (5)

s.t. (3), (4),
Nm∑
n=1

ykn,m ≤ 1, ∀k ∈ K,∀m ∈M, (6)

K∑
k=1

ykn,m ≤ 1, ∀n ∈ Nm,∀m ∈M (7)

Pmin
n ≤ P k

n,m ≤ Pmax
n , ∀n,m, k, (8)

ykn,m = {0, 1} ,∀m,n, k. (9)

Here, constraints (6) and (7) imply that each subchannel
can be allocated to multiple FUEs that belongs to different
FBSs and each FUE can be allocated at most one subchannel,
respectively; the constraint (8) guarantees that the transmit
power of each FUE on each subchannel is restricted by the
FUE’s transmit power limitation.

III. RESOURCE ALLOCATION AS A MATCHING GAME

The problem in (5) can be shown to be an NP-hard combi-
natorial optimization problem, because it contains binary vari-
ables (Y ) and continuous variables (Y ). To solve (5), we first
decouple it by splitting into two independent phases: subchan-
nel allocation phase (SCA) (between FUEs and subchannels),
and power control phase (PC), as shown in Fig. 2. In order to
solve problems in the SCA phase, we use an approach based
on matching theory [16]. In the PC phase, we find the optimal

Optimization problem (OPT)

Results: Y*, P*

OPT PC

OPT SCA

Subchannel allocation

(Alg. 1)

1

2

Power allocation

OPT AC

Access control

FUEs

that are

rejected

by AC

(Alg.2)Joint OPT SCA and OPT PC

Figure 2: Proposed framework for solving the optimization
problem in (5).

transmit power by using geometric programming. In addition,
we consider an access control scheme to guarantee feasible
solution in the PC phase. Then, we propose a framework to
jointly combine SCA and PC phases.

A. Sub-channel allocation as a matching problem
In this subsection, we decouple variable P k

n,m and ykn,m
by fixing variable Y , then the subchannels allocation Y are
determined by solving optimization problem OPT-SCA, as
follows:

OPT-SCA:
max.
(Y )

M∑
m=1

Nm∑
n=1

K∑
k=1

Rk
n,m(Y,P ), (10)

s.t. (6), (7).

In problem OPT-SCA, (4) and (3), which will be considered
in the PC phase, are temporarily ignored. Obviously, OPT-
SCA is still NP hard. In order to solve it, we decompose
OPT-SCA into M subproblems such that each subproblem
corresponds to the subchannel allocation in signal FBS given
allocated subchannels in other SBSs as follows:

OPT-SCA{m}:

max.
(Y )

Nm∑
n=1

K∑
k=1

Rk
n,m(Y,P ), (11)

s.t. (6), (7).

Here, the problem OPT-SCA{m} is a combinatorial opti-
mization problem with binary variables ykn,m, which can be
solved centrally using the Hungarian algorithm. However, in
our model, FUEs and FBSs’ decision selfishly and rationally



interact in a way that maximizing their utilities, which are also
depend on resource allocation in the whole system. Therefore,
in order to model competition among FUEs and FBSs, we
solve the problem OPT-SCA{m} using a one-to-one matching
game [17], [18], which helps us to find subchannel allocation
in a distributed manner.

1) Definition of matching game for subchannel allocation
of signal FBS in the SCA phase: The problem in (11) is
formulated as a matching game which is defined by a tu-
ple (Nm,Km,�Nm

,�Km
). Here, �Nm

= {�n,m}n∈Nm
and

�Km
= {�k,m}k∈Km

denote the preference relation of FUEs
and subchannels in FBS m, respectively. We define the prob-
lem as matching game one-to-one, as follows:

Definition 1. Given two disjoint finite sets of FUEs Nm and
subchannels Km, a matching game for subchannel allocation
in FBS m is defined as a function µm: Nm 7→ Km such that:
1, n = µm(k)↔ k = µm(n), n ∈ Nm, k ∈ Km;
2, |µm(k)|≤ 1 and |µm(n)|≤ 1, n ∈ Nm, k ∈ Km.

The conditions |µm(k)|≤ 1 and |µm(n)|≤ 1 in Definition
1 correspond to the constraints in (6) and (7), respectively. In
the matching µm, we define φn,m(k) and φk,m(n) are utility
functions of FUE n for subchannel k and subchannel k for
FUE n in FBS m, respectively. FUE n that associated with
FBS m prefers subchannel k1 to k2 and an subchannel k in
FBS m prefers FUE n1 to n2 are denoted by k1 �n,m k2

(k1, k2 ∈ Km) and n1 �k,m n2 (n1, n2 ∈ Nm), respectively.
Next, we define the utility function of both the FUE and FBS
as bellows.

Utility function of the FUE. After the FUE associates
with a FBS, each FUE obtains the corresponding subchannel
response of each subchannel via a utility function which is
proposed as follows:

φn,m(k) = Rk
n,m(Y,P ), (12)

in which each FUE n estimates its utility on each subchannel
k based on its data rate achieved on subchannel k. By using
utility function in (12), FUEs have to bid to occupy each
subchannel which maximize their utility function.

Utility function of the FBS on each subchannel. Each
FBS tries to maximize its utility function on each subchannel
which is given by

φk,m(n) = ϕSCAR
k
n,m(Y,P )− Ck

n,m, (13)

in which Rk
n,m(Y,P ) is the estimation of the data rate of FUE

n on subchannel k; ϕSCA is factor to convert data rate Rk
n,m

to benefit received from FUE n on subchannel k; Ck
n,m is the

cost due to interference caused by FUE n to the MBS and
other FBSs on subchannel k, which is determined as follows:

Ck
n,m = ck0η

kgkn,0P
k
n,m +

M\{m}∑
m′=1

Nm′∑
n′=1

ykm′,n′c
k
m′g

k
n,m′P

k
n,m,

(14)

where ck0η
kgkn0P

k
n,m is the cost of violation at the MBS

on subchannel k causing by FUE n given transmit power
P k
n,m; ηk = max(0, Ik,th −

∑M
m=1

∑Nm

n=1 y
k
n,mg

k
n,0P

k
n,m)

Algorithm 1 (MSCA): Matching game algorithm for allocat-
ing subchannels.
Initialization:
1: Nm,Km,N req

k = ∅, N rej
k = ∅, ∀k ∈ Km, m =∈M.

2: Construct preference relation of all FUEs on subchannels that are
not matched in each FBS using (12).

Swap matching to find stable matching µm:
3: while

∑
∀k,n

bSCA
n→k(t) 6= 0 do

4: Each FUE n ∈ Nm:
5: Finds k = arg max

k∈�n,m

φn,m(k), ∀k ∈ Km.

6: Sends a bid bSCA
n→k(t) = 1 to FBS m.

7: Each subchannel k of FBS m (k ∈ Km):
8: Update bidder list on each subchannel k

N k,req
m ← {n : bSCA

n→k(t) = 1, n ∈ Nm}.
9: Construct preference list �k,m based on (13) .

10: Assign subchannel k to FUE n∗ = arg max
n∈�k,m

φk,m(n).

11: Update reject list: N k,rej
m ← N k,rej

m ∪ {N k,req
m \ {n∗}}.

12: Remove subchannel k from �n,m, ∀n ∈ N k,rej
m .

13: end while
until: Convergence to stable matching µ∗m.

is the metric which quantifies the degree of violation at
the MBS on subchannel k which is proposed in [9];

M∑
m′=1,m′ 6=m

Nm′∑
n′=1

ykm′,n′c
k
m′g

k
n,m′P

k
n,m quantifies the aggregate

relative interference that FUE n causes to other FBS m′

(∀m′ 6= m) on subchannel k; ck0 and ckm′ are the cost per
each interference transmit power unit at the MBS and FBS
m′, respectively. In our proposed matching game, each FBS
m prefers to assign its subchannel to an FUE that maximizes
FUE’s satisfaction but less violation to the macrocell network
and aggregate interference to other FBS on each subchannel.

2) Distributed algorithm for subchannel allocation based on
matching game: For formulated one-to-one matching game,
our purpose is to find a stable matching which is defined as
follows:

Definition 2. A matching µ∗m is stable if there is no blocking
pair. A pair (n, k) 6= µm, where n ∈ Nm, k ∈ Km is said to
be a blocking pair for the matching µm if there exists another
matching µ′m ∈ µm(n, k) such that FUE n and FBS m can
achieve a higher utility. Here, µ′m �n,m µm and µ′m �k µm.

The distributed algorithm used to solve the OPT-SCA{m}
is presented in Algorithm 1 and referred to as the MSCA
algorithm. In this algorithm, FBS m broadcasts its available
subchannel to its FUEs. Based on information of subchannel
k, each FUE constructs its preference list based on (12)
(line 2). In the swap matching phase, each FUE sends a bid
request bSCA

n→k(t) = 1 to access subchannel k that has the
highest utility value (lines 3, 4 and 5). At the FBS side, the
FBS collects information from bidding requests and constructs
preference list on each subchannel (lines 8, 9 and 10). Based
on the preference relation of subchannels, the FBS assigns
subchannels to FUEs which bring highest utility value (line
11). The FUE removes the subchannel in its preference that is
rejected by FBS m (line 12). In a signal FBS m, the process



of acceptance or rejection of applicants is done in a manner
analogous to the conventional deferred acceptance algorithms
[17], [18]. Thus, Algorithm 1 in signal FBS m can converge
to the stable matching µ∗m [19].

B. Access control and power allocation in the PC phase

Since allocating subchannels to FUEs in a FBS can overlap
with other, some FUEs in different FBSs can be allocated the
same subchannel. To mitigate the cross interference among the
FBSs and improve efficient spectrum usages, subchannel and
power allocation among femtocells need to be coordinated.
In order to coordinate among femtocells, FBSs send their
proposals of subchannels to the CFM. The CFM collects
information from FBS and then make decisions of subchannel
and power allocation to proposed femtocells.

Due to orthogonal subchannels, we decompose the
coordinated problems into K sub-problems. Each subproblem
is given as follows:

OPT-PC{k},k∈K:
max.
P(Gk)

∑
n∈Gk

Rk
n,m(P(Gk)) (15)

s.t. (3), (4), (8).

Here, we only consider the FUEs and FBSs that are using
the same subchannel k which is denoted by the set Gk.
OPT-PC{k},k∈K is commonly known as the problem of joint
power and admission control of the FUEs based on spectrum
underlay, which try to find and admit a subset of FUEs to
optimize different objectives [4], [5], [9]. These objectives
include maximizing the number of admitted FUEs in set Gk
and maximizing the total throughput in (15). The problem of
maximizing number of active FUEs on the subchannel k is
formulated as follows:

OPT-AC{k},k∈K:
max. |Gk| (16)
s.t. (3), (4), (8).

Since OPT-AC{k},k∈K is well-studied in the literature with
many existing schemes for finding the optimal solutions [4],
[5], [9], we adopt an algorithm known effective link gain
radio removal algorithms (ELGRA) which is proposed in
[5]. ELGRA is proved to obtain the globally optimal of the
minimum outage problem stated in the OPT-AC{k},k∈K with
a computational complexity O(|Gk| log|Gk|).

Once a maximal feasible subset Gk is found, what remains
is to adapt the transmit-power P(Gk) of the admitted FUEs so
that the OPT-PC{k},k∈K problem is maximized. Different with
previous works, we solve OPT-PC{k},k∈K using geometric
programming [20].

Previously, we transform the OPT-PC{k},k∈K into con-
vex problem. Since Rk

n,m >> 0, Γk
n,m >> 1, we

have Rk
n,m ≈ Bk log(Γk

n,m). Therefore,
∑

n∈Gk R
k
n,m ≈∑

n∈Gk Bk log2

(
Γk
n,m

)
. Then, the OPT-PC is equivalent to

the following problem:

OPT-PC{k},k∈K:
min .

∑
n∈Gk

Bk log2

(
1

Γk
n,m

)
, (17)

s.t. (3), (4), (8).

This optimization problem is now transformed into a
standard form of the geometric programming problem,
which remains non-convex. However, by defining a
new variable P̃ k

n,m = logP k
n,m and a new feasible set

Vk
n = {P k

n,m|P k
n,m ∈ [logPmin

n , logPmax
n ], ∀n ∈ Gk}.

Additionally, we introduce an auxiliary variable to estimate
intra-tier interference Zk

n′,m
∆
= gkn′,mP

k
n′,m′ and an new

variable Z̃k
n′,m = log(Zk

n′,m), where n ∈ Nm, n
′ ∈ Nm′ ,

n, n′,m,m′ ∈ Gk,m′ 6= m. The OPT-PC{k},k∈K becomes:

OPT-PC-1{k},k∈K:

min.
(P̃ ,Z̃)

|Gk|∑
n=1

log

e−P̃k
n,m

gkn,m

|Gk\{n}|∑
n′=1

eZ̃
k
n′,m + gkk,mP

k
k,0 + σ2

,
(18)

s.t.
|Gk|∑
n=1

gkn,0e
P̃k

n,m − Ik,th0 ≤ 0,∀n,m ∈ Gk, n ∈ Nm, (19)

log

[
e
−P̃k

n,m

gk
n,m

(
|Gk|∑

n′=1,n′ 6=n

eZ̃
k
n′,m + gkk,mP

k
k,0 + σ2

)]
− log (χn) ≤ 0, n, n′ ∈ Gk, n ∈ Nm, n

′ ∈ Nm′ ,m
′ 6= m.

(20)

Z̃k
n′,m = log(gkn′,m) + P̃ k

n′,m′ ,∀n,m ∈ Gk,m′ 6= m, (21)

P̃ k
n,m ∈ Vk

n,∀n,m ∈ Gk, k ∈ K, (22)

in which χn = 2
−Rmin

n
Bk , ∀m,m′ ∈M.

We can see that OPT-PC-1{k},k∈K is a convex optimization
problem in the (P̃ , Z̃)-space [21]. The optimization problem
OPT-PC-1{k},k∈K is now a standard optimization problem that
can be solved using solvers such as the YALMIP toolbox to
find optimal transmit power of FUEs [22].

We note that the optimization problems OPT-AC{k},k∈K and
OPT-PC-1{k},k∈K can be solved by the CFM. The CFM plays
a role as an access controller to make decisions in rejecting
or accepting FUEs that are assigned subchannels in the SCA
phase. Additionally, the CFM also plays a role as an optimizer
for OPT-PC-1{k},k∈K.

C. Joint subchannel allocation and power control
In this subsection, we propose a framework for joint SCA

and PC as shown in Fig. 2. The proposed framework is
discussed in Algorithm 2. In the initialization step, each FBS m
contains a set of K available subchannels that are not matched
to its FUEs. Then, P k

n,m is initialized with uniform power
distributed among all available subchannels. First of all, FUEs
join into the SCA phase to find subchannel allocation based on
Algorithm 1. Then, FBSs send proposals of their subchannels



Algorithm 2 : Joint SCA and PC.
Initilization:
1: Initialize Pk

n,m with uniform power distributed among all available
subchannels, ∀n ∈ Nm, Km = K, ∀m ∈M.

2: repeat
3: Each FBS m(m ∈M):
4: Runs the Algorithm 1 to find subchannel allocation.
5: Sends FUE’s proposal on subchannel k to the AC.
6: At the access controller (on each subchannel k(k ∈ K)):
7: Collect information FUEs allocating to subchannel k, (k ∈ K).
8: while OPT-PC{k},k∈K is infeasible solution do
9: Removes pairs (n,m) ∈ Gk based on ELGRA algorithm.

10: Removes subchannel k from �n,m in FBS m.
11: end while.
12: Update subchannel allocations information.
13: Update transmit power for FUEs using YALMIP tool.
14: Goes back to line 4 .
15: until Convergence to stable groups Gk, ∀k ∈ K.

in the SCA phase to the CFM. The CFM rejects (FUE-FBS)
pairs proposed on subchannel k that cause infeasible solution
in OPT-PC-1{k},k∈K based on the ELGRA algorithm (line 9).
The FUEs that are removed by the access controller will find
new subchannels in their preference list by going back to the
MSCA algorithm in the SCA phase (line 14). On the other
hand, FUEs that guaranteed feasible solution of problem OPT-
PC will be allocated transmit power by using YALMIP toolbox
(line 13). Next, subchannel and power allocation are updated
for all FUEs at all femtocells. Due to new updated information
leads to changing preference relation of FUEs and FBSs, the
SCA will be repeated to find subchannel allocation for FUEs
that not allocated any subchannel. Our algorithm repeats until
Gk,∀k ∈ K remain unchanged for two consecutive matchings
or have no new request from FUEs in both UA and SCA
phases which mean achieve a group state. The convergence
and stability of the Algorithm 2 are proved in Section IV.

IV. CONVERGENCE AND STABILITY OF THE PROPOSED
ALGORITHM

In this section, we prove that Algorithm 2 can converge
to group stable matching Gk,∀k ∈ K. We define the group
stability and show that our proposed algorithms results in
group stable matchings as below.

Definition 3. Given the interrelationship between FUEs, FBS,
and subchannels in the Algorithm 2, a group Gk is stable if
it is not blocked by any group as expressed via following two
conditions:
1) No FUE n′ outside the group Gk can join it.
2) No FUE n inside the group Gk can leave it.

A matching is group stable if and only if all the groups
Gk,∀k ∈ K are group stable.

We consider a group of (n,m) pairs Gk that is formed by
matching the FUEs to subchannels in FBSs and optimization
processes in the PC phase. Assuming there exist a FUE
n′ ∈ N\Gk. We first consider n′, n ∈ Nm. Due to n′ can
join into group Gk, n′ = µm(k). Due to matching µm is
stable, n′ ≡ n and n = µm(k). Next, we consider the

scenario n′ ∈ Nm′ , n ∈ Nm,m 6= m′. If n′ can join to
group Gk, n′ = µm(k) in stable matching µm(k) of FBS m′.
Additionally, given proposal of n′ in FBS m to the PC phase,
n′ can join to Gk if

∑
(n′,m′)→Gk

Rk
n,m >

∑
Gk

Rk
n,m. But due

to Gk is formed by stable matchings in the SCA phase, no
more FUEs are requested in the SCA phase which lead to
no more FUE are rejected in the PC phase. Hence, (n′,m′) =
arg max

∑
(n,m)∈Gk

Rk
n,m. Therefore, from two above considered

scenarios, we can say that n′ ≡ n or no FUE n′ outside the
group Gk can join it. Similarly, no FUE n inside the group Gk
can leave it.

However, the two conditions in the Definition 3 are not
sufficient to ensure the required stability of the matching.

Proposition 1. Given the matching operation in the Algo-
rithm 2, the FUE n that is accepted by matching µm in the
SCA phase and processing optimization in the PC phase will
not be rejected in plan of any new applicant in next iterations.

Proof: First, in the initial iteration where no FUE
are matched to any subchannel. When forming a group
Gk, each FUE in Gk is accepted in the SCA with FUE
n = arg max

n∈�k

φkSCA(n) and PC phase with FUE n =

arg max
n∈Gk

∑
(n,m)∈Gk

Rk
n,m. Thus, the preference ordering of FUE

n in the SCA phase of each FBS m can be denoted by
U �n k �n W in which U and W are defined as follows:

U = {∀k′ ∈ Km|φkSCA(n′) > φkSCA(n)} (23)
W = {∀k′ ∈ Km|φkSCA(n′) < φkSCA(n)} (24)

In the next iterations when FUEs that are rejected by CFM
in optimization processes of the PC phase, the processes of
acceptance or rejection of new applicants in the SCA phase
are restarted using MSCA algorithm. Thus, we can ensure
each k ∈ Km is accepted in previous iteration, the FUE that
µm(k) = arg max

n∈�k

φkSCA(n). So, if FUE n′ 6= n applies for

subchannel k in the next matching µ′m of next iterations, then
k′ = µ′m(n′) ∈ U . Now, we can conclude that the FUEs who
are accepted in the first iteration will not be rejected by their
match as the game proceeds.

From the Proposition 1, we show the stability of matchings
in the Algorithm 2 as follows:

Theorem 1. Each group Gk, k ∈ K becomes a group stable
after finite number of iterations and, thus the Algorithm 2 is
guaranteed to converge.

Proof: Because the detected FBS by each FUE and
available subchannel in each FBSs are finite, preference lists
of each FUE in the SCA phase are also finite. Moreover, each
FUE n ∈ Nm,∀m ∈ M will not reject its current match
µm(k) which discussed in Proposition 1. Hence, only new
FUEs can join a subchannel k that are not matched with any
other FUEs. Thus, FUE n will not get back to a subchannel if
it is rejected in previous iterations. Additionally, have no new
proposal sent by FUE n in FBS m on subchannel k when



FUE n is rejected in the PC phase in previous iterations.
Therefore, the each rejecting from the FBS and CFM side
cause decreasing size of its preference lists in the SCA phase.
Therefore, each group Gk are formed after a finite number of
iterations.

Therefore, given Proposition 1 and Theorem 1, they are
enough to show that any matched pair (n, k) will not achieve
a higher utility than if any entity in the matched pair were
to match in other pairs. Hence, the proposed Algorithm 2 is
guaranteed to reach a stable outcome for matching FUEs and
subchannels in all FBSs after a finite number of iterations.

V. SIMULATION RESULTS

For our simulations, we consider one MBS and 5 FBSs with
the coverage radii of 500 m and 25 m, respectively. FBSs are
deployed in a small indoor area 150 m ×125 m to serve 4
FUEs on each FBS [7]. In the CFN, we consider 5 orthogonal
subchannels, which are allocated to 5 MUEs in the macrocell
network. The bandwidth of each subchannel is 360 kHz and
MUEs have fixed power level of 100 mW. The constraint of
maximum interference power on each subchannel at the MBS
is -70 dBm. The noise variance is set to -110 dBm. The slow-
fading channel gain is assumed to be i.i.d Rayleigh distributed
random variables with mean value g(d) = g0(d/25)−4) where
g0 is a reference channel gain at a distance 25 m. Each FUEs
has minimum rate requirement of 2.5 Mbps. Each FUE has
maximum transmit power of 100 mW. Moreover, we set the
values ϕSCA, ck0 , and ckm equal to 1, 1, and 0.1, respectively.

All statistical results are averaged over a large number of
independent simulation runs. FUEs are randomly located inside
the coverage region of FBSs. Moreover, MUEs are randomly
distributed outside area 150× 125 m2.

In Section IV, we have shown that Algorithm 2 converges to
a stable group if and only if the SCA phase is stable. Hence,
without loss of generality, we consider the convergence and
stability of our proposed algorithms via stable matching in the
SCA phase. In Fig. 3a, the SCA phase converges to stable
matching after around 15 iterations of the MSCA algorithm,
which means that there exits no further requests from FUEs
to FBSs after 15 iterations in the SCA phase. By changing
the number of FUEs, we can see that the average number
of requests is increasing with the number of FUEs in the
system (shown in Fig. 3b). Moreover, Fig. 3b shows that the
SCA phase converges to stable matching with small number
of requests from FUEs.

To evaluate the performance, we compare our approach with
three baselines. The first baseline is a “random” scheme in
which FBSs and CFM randomly assign subchannels to FUEs.
The second baseline is a “greedy” in which FUEs choose
subchannels with highest data rate in SCA phase. The third
baseline, is the PC phase without OPA scheme in which
the subchannels are allocated to FUEs by using MSCA and
ELGRA but we ignore finding optimal power allocation in the
PC phase.

In Fig. 4, we show the average aggregate throughput of the
uplink CFN versus the total number of FUEs, while fixing
interference threshold on all subchannels Ik,th = -70 dBm.
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Figure 3: Convergence of the SCA phase in the Algorithm 2:
(a) Convergence of the SCA phase with N = 20 FUEs; (b)
The average total number of requests of the SCA phase versus
the number of FUEs.

Number of FUEs
0 5 10 15 20

O
v
e
ra

l 
n
e
tw

o
rk

 t
h
ro

u
g
h
p
u
t 

(M
b
/s

)

0

5

10

15

20

25
(a)

Proposed algorithms

Random

PC phase without OPA

Greedy algorithms

Number of FUEs
0 5 10 15 20

O
u
ta

g
e
 p

ro
b
a
b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(b)

Random

PC phase without OPA

Proposed Algorithms

Greedy Algorithms

Figure 4: Total throughput and outage probability in uplink
CFN versus number of FUEs N when M = 5, K = 5, Ik,th =
-70 dBm.
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Figure 5: Total throughput and outage probability in uplink
CFN versus the interference threshold Ithk when M = 5, N =
10 FUEs, K = 5.

As the N increases, the total throughput from the proposed
algorithms and considered baselines increases. However, our
proposal is better than other schemes in term of the total
network throughput and outage probability. This is due to the
fact that, as N increases, competition among FUEs to allocate
subchannels increases. Using proposed algorithms, the FUEs



will be more connected within groups which means more
efficient subchannel allocation as shown in Fig. 4b. Moreover,
based on the optimal power allocation of FUEs, proposed
algorithms will be achieved maximum transmit power for
FUEs while guaranteeing the MBS protection and minimum
data rate of FUEs. Thus, our proposed scheme is also achieved
more efficient power allocation than one another as showed in
Fig. 4a.

Fig. 5a and Fig. 5b show the total uplink capacity and outage
probability of the CFN for the interference temperature limit
increases from -110 dBm to -20 dBm, respectively. It can be
seen from the figure that higher interference threshold limit
Ithk induces higher total capacity and lower outage probability
of the CFN. Fig. 5b shows that the total throughput and outage
probability are up to around 40% higher for the proposed
algorithms compare to the Greedy algorithm and random base-
lines for Ik,th0 = −20dBm, respectively. As the interference
threshold Ik,thk reduces, the transmit power of FUEs to avoid
interference at MBS on subchannels reduces. Hence, the CFN
resource become more scarce. However, Fig. 5b shows that by
using the proposed algorithms, FUEs will be more connected
which means more efficient subchannel allocation. Fig. 5a
shows that by using the proposed algorithms, FUEs will be
achieved higher total throughput under finding optimal power
allocation than one another.

VI. CONCLUSIONS

In this paper, we have proposed a novel framework for joint
subchannel assignment and power allocation problem in uplink
cognitive femtocell network. Based on the studied model, the
efficient resource allocation in the CFN has considered via an
optimization problem in which we have maximized the total
uplink throughput while guaranteeing FUEs minimum rate
requirement and MBS protection. The optimization problem
has shown to be NP-hard. In order to solve it, we have
proposed a novel framework based on dynamic matching
game. Then, we have designed distributed algorithms to find
subchannel assignment and power allocation for FUEs. Our
algorithms have proved converting to group stable matchings.
Simulation results have showed that the proposed approach
have yielded a performance improvement, in terms of the
total network throughput and outage probability with a small
number of iterations.
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