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Abstract—In this paper, we develop an opportunistic schedul-
ing policy for allocating spectrum in cognitive radio networks.
We maximize the throughput utility of secondary users subject
to maximum collision constraints with the primary users. Par-
ticularly, we consider a cognitive radio network with a subset
of the secondary users desire to use the licensed channels of
primary system in a stochastic environment. Based on Lyapunov
technique, we formulate the above problem as a Lyapunov
optimization problem on stability region of virtual and actual
queues. Then, we propose an online flow control, scheduling and
spectrum allocation algorithm that meets the desired objectives
and provides explicit performance guarantees.

Index Terms—Cognitive Radio Network, Resource Allocation,
Lyapunov Optimization.

I. INTRODUCTION

Cognitive radio network (CRN) emerged as a mean to
improve the wireless spectrum utilization in future wireless
networks [1]-[3]. In which, cognitive radio (CR) is a technique
that allows a secondary user (SU) to access the licensed
spectrum (allocated for primary users (PUs)). However the
SU’s access has a lower-priority than PU, thereby significantly
improving overall spectrum utilization. In overlay CRN, the
SU has to vacate the occupied channel immediately whenever
a PUs transmission on the same channel is detected as the
PU always takes precedence over SUs to access the licensed
spectrum band [4]-[6].

In this paper, we consider an overlay cognitive radio
network with multiple SUs which utilize licensed channels
from a primary network with multiple PUs. Packets arrive
randomly at the SUs and are queued for transmission. The
PUs are the licensed owners of the channels, they transmit
their data to receivers whenever they have data to send. The
SUs do not have any licensed spectrum and seek to transmit
opportunistically on the primary channels. Therefore, a SU
cannot transmit its own data when the channel is busy. When
a SU wants to transmit its data, initially it senses and detects
an idle channel from a set of licensed channels, and then it
selects one idle channel for transmitting data. But in fact, the
sensing results of the SUs can be received without the ideal
channel state information. Consequently, the SU’s transmission
can be conflicted with the PUs.

In this work, we use a novel alternative approach that
overcomes these limitations. We first transform the problem
[3] into a sequence of online unconstrained stochastic shortest
path problems, using a ratio rule for Lyapunov optimization.
After that, we use the techniques of adaptive queueing and
Lyapunov Optimization [8] to design an online flow control,
scheduling and spectrum allocation algorithm for a secondary

network. Moreover, these algorithms maximizes the utility of
SUs subject to maximum rate of collisions with the PUs.
We develop a simple Lyapunov drift technique that achieves
system stability and performance optimization simultaneously
[8], [9] -[11].

The remaining of the paper is organized as follow: Section
II introduces the network model and defines own problem. In
Section III, we propose and analyze the dynamic algorithm
based on the Lyapunov Optimization theory. In Section IV, we
analyze the performance of the proposed algorithm. Numerical
results are illustrated in Section V. Finally, we conclude our
work in section VI.

II. NETWORK MODEL AND PROBLEM DEFINITION
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Fig. 1. System model

We consider an infrastructure based CRN consisting of
three sets, let K be the set of SUs, M be the set of PUs, and
both of them share a common set of M orthogonal channels
as shown in figure 1. Let K and M respective be the size
of these sets. Moreover, we assume that the CRN operates
in slotted time with time slots t ∈ {0, 1, 2, ...}. Specifically,
let Sm(t) represent the state of the channel m on slot t. The
availability of channels of PUs are characterized as two-state
ergodic Markov Chain with idle probability πm. We assume
that πm is obtained by secondary base station (SBS) through a
knowledge of the traffic statistics and/or the channel sensing.
Here Sm(t) ∈ {0, 1} with the interpretation that Sm(t) = 0 if
channel m is occupied by PU in timeslot t and Sm(t) = 1
if PU is idle in timeslot t. The steady state probability is
represented by πm = Pr[Sm(t) = 1].

Define xk(t) as the total number of packets that SU k
(k ∈ K) transmits on slot t. Define an allocation process
φkm(t) as follows:

φkm(t) =

{
1 if channel m is allocated to SU k at slot t,

0 otherwise.
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and the “collision” variable Cm(t) for the PU can be devised
as: Cm(t) > 0 if there is a collision with the PU in the
channel m at slot t, Cm(t) = 0 otherwise.

For a given control algorithm, let x̄k, φ̄km and c̄m
represent the time average of the xk(t), φkm(t) and Cm(t)
processes for all k ∈ K and m ∈ M :

x̄k = lim
t→∞

1

t

t−1∑
τ=0

xk(τ) φ̄km = lim
t→∞

1

t

t−1∑
τ=0

φkm(τ)

c̄m = lim
t→∞

1

t

t−1∑
τ=0

Cm(τ)

These limits are temporarily assumed to exist. The value x̄k

is the time average transmission rate of SU k, and φ̄km is the
fraction of time that a given channel m is allocated to SU k,
and c̄m is the time average collision rate of PU m.

The collision variable Cm(t) can be expressed in terms of
the channel idle probability πm and allocation process φkm(t)
as follows [3]:

Cm(t) =
∑
k∈K

cmφkm(t)(1− πm), (1)

where cm is denoted to the fix link capacities of channel m.
The infinite horizon utility problem of interest is thus:

Maximize:
∑
k∈K

Uk(x̄k) (2)

Subject to:

x̄k ≤
∑

m∈M
ckπmφ̄km, ∀k ∈ K (3)

∑
k∈K

φkm(t) ≤ 1,
∑

m∈M
φkm(t) ≤ 1, ∀k,m (4)

c̄m ≤ ρmcm, ∀m ∈ M. (5)

where for each k ∈ K, Uk(x) are given concave functions and
ρmcm is maximum packet collision rate that channel m can
tolerate. The value Uk(x̄k) represents the utility associated
with SU k when using the channel of PU to transmit at rate x̄k.
Fix link capacities of SUs and PUs (we use the terms capacity
of PU and capacity of channel interchangeably) are denoted
by ck and cm respectively. The constraint (3) ensures that the
average transmission rate on PU channel cannot exceed the
channel’s capacity. The constraint (4) allows at most one SU
to be allocated to one channel and at most one channel to
be allocated to one SU at any time slot t, so the collision
between two SUs is eliminated in our model. (5) ensures
the collision maximum tolerance of all channels is guaranteed.

III. THE DYNAMIC ALGORITHM

The problem (2)-(5) can be solved via the stochastic
network optimization theory [8]. This problem involves a
function of a time average. It does not conform to the structure
required for the Lyapunov drift-plus-penalty framework in [8].
We must transform the problem (2)-(5) to the problem that
involves only time average (not function of time average), so
that the Lyapunov framework can be applied.

Lemma 1: (Equivalent Transformation) The problem (2)-(5)
is equivalent to the following transformed problem:

Maximize:
∑
k∈K

Uk(γk) (6)

Subject to:

γ̄k ≤ x̄k, ∀k ∈ K (7)

x̄k ≤
∑

m∈M
ckπmφ̄km, ∀k ∈ K (8)

∑
k∈K

φkm(t) ≤ 1,
∑

m∈M
φkm(t) ≤ 1, ∀k,m (9)

c̄m ≤ ρmcm, ∀m ∈ M (10)

0 ≤ γk(t) ≤ xmax
k . (11)

where γk(t) is an auxiliary variable, and Uk(γk) is defined
as the time average of the process Uk(γk(t)). The auxiliary
variables γk(t) act as proxies for the actual transmission rate
variables xk(t).

A. Virtual Queues

To facilitate satisfaction of the constraint (7), for each k ∈
K define a virtual queue Qk(t) with dynamics:

Qk(t+ 1) = max[Qk(t) + γk(t)− xk(t), 0]. (12)

The update (12) can be interpreted as queueing equation
where γk(t) is the arrival data of SU k on slot t, and xk(t) is
the transmission data. Stabilizing Qk(t) ensures γ̄k ≤ x̄k.

To satisfy the constraints (8), for each k ∈ K define a
virtual queue Zk(t) with dynamics:

Zk(t+1) = max[Zk(t)+xk(t)−
∑

m∈M
ckπmφkm(t), 0]. (13)

The intuition is that xk(t) can be viewed as the “arrivals”
on slot t, and

∑
m∈M ckπmφkm(t) can be view as the “offered

service” on slot t. Stabilizing virtual queue Zk(t) ensures the
time average of the “arrivals” is less than or equal to the time
average of the “service”, which ensures constraints (8).

We define the collision queue Hm(t) for each channel m
as follows [11]

Hm(t+ 1) = max[Hm(t)− ρmcm + Cm(t), 0]. (14)

where Cm(t) is the collision variable for channel m defined in
the previous section. Stabilizing collision queue Hm(t) ensures
the constraint of collision maximum tolerance (10).

B. The Drift-Plus-Penalty Algorithm

Define the following quadratic function L(t):

L(t)
Δ
=

1

2

[∑
k∈K

Qk(t)
2
+

∑
k∈K

Zk(t)
2
+

∑
m∈M

Hm(t)
2

]

Intuitively, taking actions to push L(t) down tends to
maintain stability of all queues. Define Δ(t) as the drift on
slot t:

Δ(t)
Δ
= L(t+ 1)− L(t)

Let Θ(t) = (Qk(t), Zk(t), Hm(t))|k∈K,m∈M be the vector
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of all virtual queue values on slot t. The algorithm is designed
to observe the queues and the current state of the channel
on each slot t, and then choose xk(t) and γk(t) subject to
0 ≤ γk(t) ≤ xmax

k to minimize a bound on the following
drift-plus-penalty expression [8]:

Δ(t)− V
∑
k∈K

Uk(γk(t))

where V is a non-negative weight that affects a performance
bound. It is obvious that, the value of V affects the extent
to which our control action on slot t emphasized utility
optimization in comparison to drift minimization.

Lemma 2: Under any control algorithm, we have:

Δ(t)− V
∑
k ∈K

Uk(γk(t)) ≤ B(t)− V
∑
k∈K

Uk(γk(t))

+
∑
k∈K

Qk(t)[γk(t)− xk(t)]

+
∑
k∈K

Zk(t)[xk(t)

−
∑

m∈M
ckπmφkm(t)]

+
∑

m∈M
Hm(t)[Cm(t)− ρmcm]

(15)

where B(t) is defined:

B(t)
Δ
=

1

2

∑
k∈K

[γk(t)− xk(t)]
2

+
1

2

∑
k∈K

[xk(t)−
∑
k∈K

ckπmφkm(t)]2

+
1

2

∑
m∈M

[Cm(t)− ρmcm]2

The value of B(t) can be upper bounded by a finite
constant B every slot, where B depends on the maximum
possible values that xk(t), γk(t) and Cm(t) can take.

The algorithm is derived by identifying the factors that
involve decision variables γk(t), xk(t) and φk(t) in the last
four terms on the right-hand-site of (15).

The algorithm below is defined by observing the queues
states and channel state Sm(t) every slot t, and choosing
actions to minimize the last four terms on the right-hand-
side of (15) (not including the first term B(t)), given these
observed quantities. Using definitions of Cm(t) in (1) leads to
the following on each slot t:

IV. SIMULATION

We consider a CRN that consists of 5 SUs, each of them
has an opportunity to access to 9 orthogonal channels which
are serving 9 PUs. Link capacities of all SUs and PUs are
chosen randomly, from a uniform distribution on [0, 1]. We
choose the utility function of SUs Um(xm) = ln(1 + νkxm).
The QoS constraint ρm is set to 0.2 for all channels. The
Hungarian algorithm [12] is used to solve (21). We vary
different values of V = 1, 5, 10, 15, 20 for the comparison.
In order to show that our algorithm can adapt to the change

Algorithm 1 The Drift-Plus-Penalty Algorithm

• (Auxiliary Variables) Every slot t, each SU k ∈ K
observes Qk(t) and chooses γk(t) as the solution to:

Maximize V Uk(γk(t))−Qk(t)γk(t)

Subject to 0 ≤ γk(t) ≤ xmax
k

(16)

• (Flow Control) Every slot t, each SU k ∈ K observes
Qk(t) and Zk(t) and choose xk(t) to maximize:

Maximize (Qk(t)− Zk(t))xk(t)

Subject to xk(t) ≤ xmax
k

(17)

• (Scheduling) The SBS observes all queues
(Q(t),Z(t),H(t)) and channel state S(t) on
slot t, and chooses vector φ(t) to maximize:

Maximize
∑
k∈K

Zk(t)
∑

m∈M
ckπmφkm(t)

−
∑

m∈M
Hm(t)

∑
k∈K

cmφkm(t)(1− πm)

Subject to
∑
k∈K

φkm(t) ≤ 1,
∑

m∈M
φkm(t) ≤ 1

(18)
• (Queue updates) Update virtual queues Qk(t), Zk(t)

and Hm(t) for all k ∈ K via (12), (13) and (14).

of traffic statistics, we consider two cases: high and low
channel-occupancy of PUs, where the channel-idle probability
π is assumed to have a uniform distribution on [0.1, 0.3] and
[0.7, 0.9] respectively.

Fig.2 represents the resulting average throughput of 5 SUs
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Fig. 2. Average throughput per-secondary user versus time (5 users, 9
channels) in three cases of V . Each SU has a maximum transmission rate
of 1 packet/slot.

in three cases of V = 1, 5, 10 and xmax
k = 1. At the beginning,

we assume that the network is under high channel-occupancy
condition, after 1000th timeslot, the network state changes to
the low channel-occupancy condition leading to the increase
of SUs throughput. In case of V = 1 the average throughput is
lower than in case of V = 5 and V = 10 which illustrates the
proportion of utility function with V values, and it converges

Copyright 2014 IEICE



to an optimal value when V ’s value gets large enough.
Fig.3 shows that the average values of Qk(t) and Zk(t)

never exceed the worst-case guarantee. Intuitively, this figure
also shows that when the channels are under the low occupancy
condition the queue backlogs will decrease in comparison with
the high channel-occupancy condition.

In Fig 4, we plot the average throughput achieved by the
secondary users. It can be seen that the average throughput
increases with V and converges to the optimal with the
difference exhibiting a O(1/V ) behavior [8]. In Fig. 5, we
plot the average queue backlog of the secondary user over this
period. It can be seen that the average queue backlog grows
linearly in V .
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Fig. 3. Average queue backlog versus time with different V values. The
values of queues never exceed the deterministic bound for all time by constant
that is proportional to V .
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Fig. 4. Average throughput versus V for channel idle probability π = 0.2,
π = 0.5 and π = 0.8.

V. CONCLUSION

This paper considered the resource allocation problem for
secondary network in the CRN. An algorithm is developed for
choosing policies and scheduling on each timeslot to maximize
a concave functions of the time average transmission rate
vector of SUs, subject to capacity of channel and maximum
collision tolerance of PUs. The proposed algorithm is based
on Lyapunov optimization concepts and involves minimizing
a drift-plus-penalty over each timeslot. Our results reveal that
using this technique we achieve optimal throughput values
along with network stability.
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Fig. 5. Queue backlog versus V , demonstrating the O(V ) behavior.
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