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Abstract In mobile crowdsensing, the most significant challenge is to enable smart devices to
perform various sensing tasks for diverse goal-oriented applications. This can be accomplished by the
interaction of task owners with smart devices via a specific platform (application interface) to influence
their acceptance for task completion, employing various incentive schemes and techniques mentioned
in the existing literatures. However, it becomes critical to handle distinct energy restrictions of participating
devices and appropriately assign task loads based upon their capabilities that have mostly been
overlooked, even more so in an unknown interaction environment. In this paper we address this issue
first by evaluating an optimal task-load assignment that maximizes a participating resource constraint
node’s utility at a resourceful node (broker), and then modeling a distributed Q-learning framework
of crowdsensing to improve the cumulative reward for participating nodes. Simulation results show that
the proposed algorithm converges quickly for the designed framework, and is very efficient to employ.
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1. Introduction

The significant increase of high end mobile devices
with higher capabilities, and the notion Internet of
Things (IoT) has enabled a cooperative working
environment of mobile crowdsensing (MCS) to
achieve better quality of sensing data.

It is considered as an emerging framework that
leverages varied location based services and applications
spanning from traffic monitoring, localization, environ—
mental monitoring and even daily activities [1,2].

The key enabling idea behind mobile crowdsensing
is device’s participation for a particular sensing task.
For this purpose authors [3], have formulated a plat-
form based campaigning using user profiling to
motivate users for a specific task. In literature not
many work discuss about ‘inconvenience’ metrics of
participating nodes such as energy constraints. Our
work  [4]

formulating an optimization framework for improving

earlier incorporates this issue while
user’s participation.

For resource constrained participants such as IoT
nodes, the story is little different, and this situation
becomes very critical that needs to be addressed
with detailed scrutiny. The interaction environment
between participating nodes (agents) and platform
becomes dynamic in nature as the agents are
unaware to evaluate the maximal utility point related
to task load offers. Furthermore, they can not decide
the cumulative reward function related to current
action of acceptance or rejection to the participation.
Thus, the challenge appears to integrate these situa-
tions for the improvement in participation of resources
constrained devices.

To narrate this scenario, in this paper we have
proposed a distributed Q-learning framework of
crowdsensing by evaluating an appropriate task load
the utility of

participating nodes. In our model, a localized set of

allocation scheme that optimizes
possible participating nodes are assisted by a
resourceful broker to instantiate an optimal task load.
The agents then interact with task owner via a light
application interface to collect and complete the
sensing tasks employing proposed Q-learning
approach. The optimal task load is considered as a

terminal point, or the maximal utility point for the

agents to explore the environment and improve the
cumulative reward.

This research work is extended from our previous
paper [5]. The rest of the paper is organized as follows:
Section 2 discusses about background literature and
related works about mobile crowdsensing. Following
this, in Section 3 we present our system model with
the interaction between participating agents and
crowdsensing platform via a resourceful broker. We
about the

proposed algorithm in Section 4. In Section 5 we

formulate our problem and discuss
discuss simulations results of the proposed algorithm.

Finally, we conclude this paper in Section 6.

2. Background and Related Works

The expected revenue from location based service
market would be crossing $43.3 billion worth by
2019 [6], which indicates massive growth of things
connected to the internet: Internet of Things (IoT).
With the increasing demand for sophisticated services
corresponding to the growth in number of connected
heterogeneous devices, a critical observation is to
collect and transmit required data for the crowd-
sensing platform. In this regards, improved number
of participations affects the quality of received data,
and to motive active devices for participation in the
crowdsensing framework, a well incentive scheme is
expected.

In the literature, a number of incentive mechanisms
have been formulated to motivate users for parti—
cipation in crowdsensing framework. In [7], [8]
authors have also discussed about the potential of
enhancing quality of received data because of strong
commitments from wusers on appropriate incentive
plan. Most of the related works, however, formulate
the problem as an individual utility maximization
game [7] [9] where the usual interaction would be in
terms of bids for a particular sensing task. Also, the
related works largely overlook critical aspects of
user's participation in the crowdsensing framework
such as inconvenience measures (in terms of energy
constraints, privacy, time of participation and so on.).
On one hand, the heterogeneity of devices has to be
appropriately addressed while on the other, the
resource restriction on each device needs to be

considered for improving participation, and eventually
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the improved quality of data.

Notably, a large number of resource constraint
devices will come online, that means the aforemen-—
tioned issues have to be incorporated while designing
crowdsensing framework. Motivated by different
incentive mechanisms and spaces for improving the
requirement for resource constraint nodes to partici—
pate in crowdsensing, this research work exploits a
learning interaction framework between participating
nodes (agents) and crowdsensing platform that
improves the overall quality of data as reflected with
favorable condition in our

maximal platform’s

optimization problem.

3. System Model

The system model is shown in Fig. 1 where we
consider a platform that communicates as a task
owner to the number of participating resource
constraints nodes (agents) via an application inter—
face. We have considered a resourceful broker that
serves as an intermediate moderator for sensory
message exchanges of the allocated task. It also
assists to the dynamic interaction environment for
appropriate number of task load allocation based upon
the energy constraints of the participating nodes.

‘When the task owner has some localized sensing
related application service to complete, it evaluates
the incentive strategy to improve participations. The
exposed via the application

pricing scheme is

interface along with task description. In such case,

@Platform

Gateway
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the broker acts as a moderator to finalize optimum
task load allocation for each individual participants
that maximizes will maximize their utilities consi-
dering inconvenience metric (energy constraints).
The participating nodes will accept or reject to the
individual task load offers to improve their cumu-—
lative reward while achieving the target of maximal
utility point. A maximal utility point can obtained
from the utility model computed by the broker consi-
dering available resources of participating nodes, and

incentives offered by the task owner for task loads.

4. Problem Formulation and Algorithm

We consider a set of participating nodes (con-—
w €U, U=1{1,2,3,.., M}

under a broker that interacts with the task requestor

sidered agents) localized
via an application interface. In our formulation we

consider the states for an agent u as a set
S, = 1{1,2,3,---,N} that is defined by the tuple of task

load allocated ( (€L, L=1{1,2,3,---,/N}) and the incen-
tive value (p) : [Ip] .The action set is defined as

x, =['accept’,'reject’] for the sequence of given task

loads at time t. The broker facilitates dynamic inter—
action environment by responding terminal task load
allocation to the agents for maximal utility point based
upon their individual energy restriction modeled by a
concave utility function. The utility of an agent u is
U:{p“— ¢, if w ?U
0, otherwise.

which can be modeled as in equation (1).

Broker (AP) to Internet Gateway

——7 _ Communication Link
O Agents (Participating Nodes)

Fig. 1 System Model
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Here,

L, is energy profile, ¢, is inconvenience parameter
and py,, s incentive offered for task load 1 to agent

u respectively. Fig. 2 illustrates the dependency of
inconvenience metrics (energy constraints) of agents
and their immediate utility to better represent the
scenario.

To define the optimal utility task load for resource
constraint agents, we refer to our earlier work [5,10],
where we analyze the historical responses by parti—
cipating agents to the crowdsensing framework over
the task load allocation and incentive plan, and design
a profile based pricing scheme. The motivation behind
this is to improve agent's participation for the
crowdsensing framework. We consider platform’s
adverse impact factor (v < 1, €[0,1]) that indicates
the favorable situation for agents to participate. The
individual agent’s inconvenience parameter as defined
in the utility framework is bounded as (¢, (>0 ), with
individual
(6, =0,1]).

The objective of participation maximization in

agent’'s bias response defined as

equation (2) improving platform’s favorable condition
is solved by the resourceful broker.

max E 2(171/}6)0([@1”,@1;];]7[lz,pul” 2

ue UlEL
subject to:
ng“rlgpmayﬂl = U S (3)
E Dy = C] (4)
=y

Constraint (3) considers the incentive limitation for

AR S] HAFE] AA =74 A 24 A A 7 5(2018. 7)

each user on a particular task, and constraint (4)
guarantees budget constraint for the platform while
designing incentive plan for the participating agents,
2 is normalized inconvenience metric feedback by the

profile of set of agents for a particular task Y, ¢/u.
u U

Our proposed sigmoid optimization problem is NP-hard
in nature. It can be easily shown; as one can reduce
a well know integer linear NP-hard problem (Karp
1972) [11],

find x

subject to: Az =10

xe{0,1}"

, to sigmoid programming
1_21/1‘(1’7'): z;(w; — 1)

subject to: Ar=1b

max

0< a,<1,i=1,-n
where, f(x) is a chosen function to enforce a penalty
on non-integral solutions. Then, we can get solution
the sigmoid problem as 0 if and only if there exists
an integral solution to the first constraint Ax =b. We
refer to the solution approach by Udell M, Boyd S
(2014) [12] to solve this optimization problem. In

accordance with the optimal incentive plan p'{

ul

} for
each agent, it is very critical to incorporate energy
constraints of participating resource deficient agents
and offer optimal utility - task load which maximizes
their utility and improves participation [10]. The optimal
task load can be analyzed for a given incentive plan
by setting first order derivative of equation (1) as

zero. ie., at p',,E,/2, .

Under heuristics based allocation, the crowdsen-—
sing platform overwhelms the participating agents by
maximal task load, so as to maximize the immediate
utility. However, under response based allocation
scheme we can allocate an optimal utility—-task load
that not just only maintains agent’s participation in
the crowdsensing framework but also considers its
inconvenience metrics (energy constraints). Fig. 3
reflects the gap between optimal utility point of parti—
cipating agents under energy restrictions employing
historical responses and heuristics. The platform
overloads participating agents with excessive tasks
in normal scenario which needs to be prevented for

improving agent’s participation.
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Fig. 4 State transition of agent u with Q-learning based

participation strategy for utility maximization

Once the resourceful broker assists for evaluation
optimal utility point for each agent, the modeled
distributed Q-learning framework enables agents to
achieve better cumulative reward under this dynamic
interaction environment in a reliable and efficient
way. Fig. 4 illustrates the state transition of agent u,
where it explores the interaction environment until it
reaches the state representing maximal utility point.

Algorithm 1 explains the Q-learning [13] approach
implemented under this scenario. The learning para—
meters are initialized (line 1) with the initial state of
the participating node. In each iteration, until con-
vertgence we evaluate the reward function for the
possible action sets. For this, equation (5) incorpo—
rates Q-value of current state, defined with immediate
reward function R, learning a set between 0 and 1,
and discount factor y € [0,1] that incorporates weights
for future reward that the immediate one.
Q,(8". 2 ) 1= Q,(5,"a)) )+ o BV, (57 V))(5)
where,

Vv, (s")= max(, | Q,(8.x,) (6)

u

The Q-values are updated in each round with the
corresponding states (line 6) and are stored in the
Q-table. On convergence, the best state—action asso-
ciation is based upon the Q-table, choosing maximum
Q value. Under ¢ - greedy approach, the agent randomly

explores the environment to obtain the terminal state.

It
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5. Simulation Results

In simulation we've instantiated the ¢ - greedy
Q-learning algorithm with 50 states. The optimal
utility task load is facilitated by the broker to the
agent. And for each successive state change the
agent is rewarded or penalized with the wvalue 10,
until the terminal state where the reward value is
100. The agents training parameters are o« =0.9, y =
0.9, and ¢ =0.9 respectively.

In Fig. 5 we can observe performance result of our
algorithm. The number steps converges quickly over
each episodes. Under ¢ - greedy approach, the agent
randomly explores the environment to obtain the
terminal state for maximal cumulative reward. Fig. 6
reflects the convergence of cumulative rewards for the
agent under successive explorations following the
Q-learning approach. The actions are based upon ¢ =
greedy policy, which is from the Q-table value for a
particular state. We can observe the quick convert—
gence also because of the fact that our state values are

Episode-Steps Realization

300
- 25
&
5
b
3 0
s
o 1] 100 150 200 250 300
MNumber of episodes
Fig. 5 Episode versus Steps
400
350
300

Cumulative Reward Valua

1] 100 200 300 400 E00
Epicodes

Fig. 6 Episode versus Cumulative Reward
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limited. Once randomly instantiated agent will train to

choose proper action set for improving his reward.

6. Conclusion

In this paper, we've proposed a distributed Q-learning
framework of crowdsensing to improve cumulative
reward for participating resource constrained nodes.
The broker facilitates the interaction environment to
improve agents ‘utility under energy constraints to
choose appropriate task load. The simulation results
show the algorithm being efficient and converging to
provide maximal cumulative reward for the partici—
pants. In future, we would like to extend this model
for the dynamic crowdsensing setting and practical

application environment.
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